ERRATA FOR ADVANCED CALCULUS DEMYSTIFIED

DAVID BACHMAN

Thanks to Bill White for encouraging me to write this errata sheet, and pointing out a few of the entries below.
p. $x x, \mathrm{l} y y=$ page $x x$, line $y y$. (If $y y$ is negative then count lines up from the bottom of the page.)
"About the author," l 1. I'm an associate Professor now! Also the research paper count is off. Not sure what it is now. Check my web page.
p. 20, l 13-15. "We can evaluate... = 1." Remove these lines. Not sure why they are there.
p. 20, l-1. The fourth part of problem 14 should be

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{6}+y^{3}}
$$

p. 67, l-7,-8. In the statement of both parts of Problem 53 there is an extra comma toward the end of the line, after θ.
p. 89, 1 10. In Example $7-19$ it says "... spanned by the vectors $\langle 1,2\rangle$ and $\langle 4,3\rangle$." It should say "... spanned by the vectors $\langle 1,2\rangle$ and $\langle 3,4\rangle$."
p. 100 , Figure. In the center of the figure there is the label $\Psi\left(t_{i+1}\right) \Psi\left(t_{i}\right)$. There is a missing minus sign here. It should read $\Psi\left(t_{i+1}\right)-\Psi\left(t_{i}\right)$
p. 103, l $-15 . \Delta t_{i} \rightarrow \infty$ should be $\Delta t_{i} \rightarrow 0$.
p. 112, l-5. The statement of Problem 88 should read "Derive a formula for the surface area of the graph of the spherical equation $\rho=f(\phi)$."
p. 118, l 8. Replace the word "cone" in the statement of Problem 93 with the word "paraboloid."
p. 137, l 2. There is an extra comma toward the end of the line, after t.
p. 140, l $7,11,-4$. There are a lot of derivatives here that should be partial derivatives. Also, there are several u 's that should be v 's. Line 7 should read:"vectors $\frac{\partial \Psi}{\partial u}$ and $\frac{\partial \Psi}{\partial v}$ are both tangent to S. Hence, the vector $\frac{\partial \Psi}{\partial u} \times \frac{\partial \Psi}{\partial v}$ is perpen-". In the integral in line 11 it should be $\frac{\partial \Psi}{\partial u} \times \frac{\partial \Psi}{\partial v}$. And this should also appear at the end of line -4 .

[^0]p. 142, Problem 113. At the end of the problem statement there should be a line added: "Use the induced orientation." (Just like in Problem 112.)
p. 147, l-3,-2. This sentence just isn't right. Instead of "Then the force of gravity...", it should say: "Then the work you have to do to overcome gravity by going uphill at the point (x, y) is proportional to the vector $\nabla f(x, y)$ "
p. 162, l-1. There is a missing minus sign in the second coordinate. It should read
$$
\nabla \times \mathbf{W}=\langle-\cos z,-\sin z, 0\rangle
$$
p. 163, l 1. Two mistakes in this line. It should read: "So, on the plane $z=1$ we have $\nabla \times \mathbf{W}=\langle-\cos 1,-\sin 1,0\rangle$."
p. 166, l 6. In the first sentence of Problem 132 it should read, "... centered at the origin with radius $0.1, "$
p 168, l-5. The " \times " symbol at the beginning of the line should be a "." symbol.
p 168, l-4. Replace $\cos \phi$ with $\cos ^{2} \phi$.
p. 170 , l 2,3,4. The " \times " symbol should be a "." symbol in all three lines.
p. 184, l 5-8. The solution given to the fourth part of Problem 14 was not right, so I changed the problem statement (see correction on page 20 above). The correct solution for the new problem here should read:

Along the y-axis

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{6}+y^{3}}=\lim _{(x, y) \rightarrow(0,0)} \frac{0}{y^{3}}=0
$$

Along the curve $y=x^{2}$

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{6}+y^{3}}=\lim _{(x, y) \rightarrow(0,0)} \frac{x^{6}}{x^{6}+x^{6}}=\frac{1}{2}
$$

p. 190, l-3, -2,-1. There are sign issues with the last three lines, and the answer isn't right. These last three lines should read:

$$
\begin{aligned}
& =-\cos \left(\frac{\pi}{2}+y\right)+\left.\cos y\right|_{0} ^{\frac{\pi}{2}} \\
& =-\cos \pi+\cos \frac{\pi}{2}+\cos \frac{\pi}{2}-\cos 0 \\
& =0
\end{aligned}
$$

p. 197, l-5. The final answer to Problem 39 should be

$$
\frac{1}{2}(\cos 6-\cos 8-\cos 5+\cos 7)
$$

p. 198, Solution to Problem 42. The third figure is not situated correctly. The two lobes should be oriented vertically, so that the surface is centered on the z-axis. This can be fixed by rotating the figure 90 degrees clockwise.
p. 199, l 3. Delete the word "negative"
p. 200, l-4. The answer for part 2 of Problem 49 should read:

$$
\frac{\pi}{2} \leq \theta \leq \pi, \quad \frac{\pi}{2} \leq \phi \leq \pi
$$

p. 202, l -5 . Limits on z should be $0 \leq z \leq 4$.
p. 203, l-1. Answer should be $-\frac{9}{15}=-\frac{3}{5}$.
p. 207, l 3. It says "... we get imaginary answers." This is wrong! Plugging $y=-\frac{4}{3}$ into $x^{2}+\frac{y^{2}}{4}=1$ and solving for x gives $x= \pm \frac{\sqrt{5}}{3}$. So $\left(\pm \frac{\sqrt{5}}{3},-\frac{4}{3}\right)$ are also critical points.
p. 207, 19 . The new critical points above have to also be checked:

$$
f\left(\pm \frac{\sqrt{5}}{3},-\frac{4}{3}\right)=\frac{5}{9}+\frac{16}{9}-\frac{8}{3}-1=-\frac{4}{3}
$$

so -2 is still the minimum, as stated.
p. 208, l-1. The signs on the first two coordinates should be switched.
p. 210, l-5. Delete the line that says $\lambda=\frac{1 \pm \sqrt{10}}{2}$. I have no idea why this is there.
p. 216, l 1 . There should be a $\frac{1}{3}$ in front of t^{3}. The line should read:

$$
\int_{C} f(x, y) d \mathbf{s}=\int_{0}^{1} f\left(\frac{1}{3} t^{3}, t\right)\left|\left\langle t^{2}, 1\right\rangle\right| d t
$$

p. 235, l-4. Missing minus sign. The determinant of the matrix should equal $\langle-y, x, 0\rangle$.
p. 235, l-1. The limits on θ are wrong. Should be $0 \leq \theta \leq \frac{\pi}{2}$.

[^0]: Date: October 13, 2009.

