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Abstract. We explain why the assumption of growth governed
by the Golden Ratio in phyllotaxis leads to a Fibonacci number
of spirals. We also explain why two families of spirals in opposite
directions are usually evident, both Fibonacci in number. Finally,
we explain why flat phyllotaxis patterns, such as in sunflowers,
seem to have different numbers of spirals depending on how far
from the center you look.

1. Introduction

The Golden Ratio φ is the positive number whose square is one larger
than itself. The Fibonacci sequence {Fn} is defined so that F0 = 1,
F1 = 1 and Fn+1 = Fn + Fn−1. In almost everything written about
the growth of sunflowers and pinecones (i.e. anything governed by
phyllotaxis), the author notes two facts:

(1) As the plant grows, the angle around the central axis between
successive seeds is determined by the Golden Ratio.

(2) If you count the number of apparent spirals, the answer is al-
most always an element of the Fibonacci sequence, usually ei-
ther 3, 5, 8, 13, 21, or 34 (although you can certainly find larger
numbers, for example, in sunflowers).

The more technical papers on this subject focus on a possible bi-
ological mechanism for plant growth, and then give a mathematical
argument for why one or the other of these two facts follows as a re-
sult. Here we take a different approach and explain why, given the first
of these facts, the second is a direct mathematical consequence. Our
results also explain why two families of spirals in opposite directions
are usually evident, both Fibonacci in number. Finally, we explain why
flat phyllotaxis patterns, such as in sunflowers, seem to have different
numbers of spirals depending on how far from the center you look.

The author thanks Henry Segerman and Edmund Harriss for helpful
comments in the preparation of this paper.
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(a) (b) (c)

Figure 1. (a) Brussels Sprout stalk. (b) Cylindrical
phyllotaxis model. (c) Spirals created by connecting each
point to its two closest neighbors.

2. Cylindrical Phyllotaxis

We’ll start with cylindrical examples of phyllotaxis, like in the Brus-
sels sprout stalk shown in Figure 1(a). To create the model shown in
Figure 1(b), we place our “sprouts” at points around a vertical cylin-
der as follows. Begin at the bottom and place the first point. Then
rotate around the cylinder 1/φ of its circumference (i.e. an angle of
2π/φ radians or 360/φ degrees), and move up the cylinder a distance
h. Place the second point there, and repeat.

To our eye, there are obvious spirals apparent in Figure 1(b). The
explanation for these perceived spirals is simple. In Figure 1(c) we
show the result of connecting each point to its two closest neighbors by
line segments. For visualization, we’ve made the size of each “sprout”
in this image smaller. Note that the resulting curves are precisely the
spirals that you see in Figure 1(b). In other words, the spirals you see
in Figure 1(b) are just due to the fact that your eye is picking out the
points that are closest together.

Let’s label the points in the order they were added, starting from
zero. As we go around the stalk adding seeds we eventually come to a
point that is closer to point 0 than any other seed will be. The distance
from point 0 to point n is the same as the distance from point n to
point 2n, and the distance from 2n to 3n. Visually, these points all lie
on the same spiral. For example, in Figure 2, point 0 is connected to
point 8 and point 8 is also connected to point 16, etc.

Note that the distance from point 0 to point n is the same as the
distance from point 1 to point n + 1. Hence, there is another spiral
going through points 1, n + 1 2n + 1, etc. Similarly, there is a third
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Figure 2. Numbering the points in the order they were
added. If point 0 is closest to point 8, then there will be
8 spirals.

spiral going through points 2, n + 2, 2n + 2, etc. Continuing in this
way, we find spirals that also start at points 3, 4, 5, all the way up to
n− 1. Since the first spiral started at point 0, we must have a total of
n spirals. See Figure 2. This observation is worth repeating: if point n
is the closest to point 0, then there will be n spirals. Hence, if we are
interested in the number of spirals, we have to get a handle on which
point is closest to point 0.

To locate a point on a cylinder relative to point 0, we rotate around
the cylinder some amount and go up some amount. If we do more than
one full rotation, then it may be shorter to rotate a smaller amount the
other way. We will call the smallest amount you have to rotate to get
from point 0 to point i the net rotation. We will measure net rotation as
a fraction of a full rotation, so that it will always be between −1/2 and
1/2 (with the sign determined by which direction you have to rotate).
For example, if some point is constructed by doing 5.83 rotations from
point 0, then the net rotation of that point is -0.17. Similarly, if we do
6.27 rotations to get from point 0 to point i, then the net rotation of
point i will be 0.27. The net rotation of the ith point, which we denote
ω(i), is easily calculated by subtracting from i/φ the nearest integer.
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If we assume that units have been chosen so that the circumference
of the cylinder is one, then to get from point 0 to point i by the shortest
path along the cylinder, you go around the cylinder by ω(i) and up by
ih. The distance between the two, D(i), is given by the Pythagorean
theorem:

D(i) =
√

[ω(i)]2 + (ih)2

Observe the following about the function D(i):

(1) As h goes to zero, D(i) tends toward |ω(i)|. Thus, as we shrink
h, a point with smaller net rotation than all of the ones below
it eventually becomes closer to point 0 than they are.

(2) If the net rotation of any point higher than point i is greater
than that of point i, then it will never be closer to point 0 than
point i.

We now state our main technical result, which we prove in Section
5.

Theorem 1. For each Fibonacci number Fn,

|ω(Fn)| = min{|ω(i)| for i < Fn+1}.

This theorem says that each point corresponding to a Fibonacci num-
ber will have the smallest net rotation among all points lower than the
point corresponding to the next Fibonacci number. This immediately
implies that the net rotation of point F5 (for example) is smaller than
the net rotations of any point below it, so by the first observation above
as we shrink h this point will become closest to point 0. However, The-
orem 1 also says that the net rotation of point F5 is smaller than that
of all of the points between it and point F6. Thus, by the second ob-
servation above as we shrink h further the point F5 will continue to be
closest to point 0, until the point F6 becomes closest. In other words,
as we shrink h each point corresponding to a Fibonacci number will
become closest to point 0, until the point corresponding to the next Fi-
bonacci number becomes closest. See Figure 3. As the number of the
closest point determines the number of spirals, the number of spirals is
always a Fibonacci number!

3. Minor spirals

Often when we look at objects that exhibit phyllotaxis, we actually
see two sets of spirals. The set that is most visually dominant we’ll call
the major spirals. These are the ones described in the previous section,
coming from connecting each point to its closest neighbors. The other
set, which we’ll call the minor spirals, comes from connecting each
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(a) (b) (c)

Figure 3. As we shrink h (the vertical spacing), the
number of spirals changes.

(a) (b)

Figure 4. (a) Major Spirals. (b) Minor Spirals.

point to its second closest neighbors. See Figure 4. Theorem 1 (and
Lemma 6, to be presented later) explains this set as well.

It follows from Theorem 1 that if point Fn is the closest neighbor to
point 0, then point Fn−1 is the second closest. By reasoning identical
to that of the previous section, this leads us to conclude that there
are Fn−1 minor spirals. Furthermore, we will see in Lemma 6 that
the signs of ω(Fn) and ω(Fn−1) are opposite. This tells us that the
major and minor spirals must be in opposite directions, with one set
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Figure 5. Near the center of the sunflower our eye picks
up 21 spirals, some of which are shown in red. Toward
the outside the 34 spirals in the opposite direction are
more visually dominant, shown in blue.

spiraling clockwise around the cylinder, and the other spiraling counter-
clockwise.

4. Sunflowers

Now that we have a better understanding of cylindrical phyllotaxis
spirals we are ready to take on flat phyllotaxis patterns, like the sun-
flower shown Figure 5. In these patterns, we tend to see a different
number of spirals depending on how far away from the center you fo-
cus. Regardless, these numbers are still usually Fibonacci.

In the previous section we looked at points on a cylinder determined
only by a vertical spacing, h. The units for h were chosen so that the
circumference of the cylinder is one. Thus, keeping the vertical spacing
constant but enlarging the radius of the cylinder has the same effect
on the numerical value of h. Hence, all of our reasoning is still valid
in this scenario: enlarging the radius of the cylinder will increase the
number of spirals, and this number will always be Fibonacci. Of course,
simultaneously enlarging the radius of the cylinder and shrinking the
vertical distance between consecutive points will only accelerate the
change in the number of spirals.
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Now consider a flat phyllotaxis picture, and let A be the portion of
this picture between concentric circles of radii r1 and r2. As before, the
(major) spirals you see in A are determined by the closest neighbors
of each point. Let h be the average radial component of the distance
between consecutive points in A. If r1 is close to r2, then the distance
between the points in A will be comparable to the distance between
phyllotaxis points on a cylinder of radius r1+r2

2
, and vertical spacing

h between consecutive points. Thus, the number of apparent spirals
must be Fibonacci.

Further out from the center of the picture r1+r2
2

will be larger, and
the radial component of the distance between consecutive points tends
to be smaller. Thus, further away from the center you’ll see a picture
more like that on a cylinder with a larger number of spirals.

As noted in the previous section, Lemma 6 tells us that the net
rotations of consecutive Fibonacci numbers have opposite sign. Hence,
as we look further from the center of the sunflower not only do the
number of spirals increase, but they switch direction as they do so. See
Figure 5.

5. Proof of Theorem 1.

In this section we present a series of technical results about net ro-
tation number, building up to a proof of Theorem 1. Much of this
material can likely be obtained using known results about Diophantine
approximations of the Golden ratio. The proofs given here are more
basic.

Lemma 2. If |ω(n) + ω(m)| < 1/2, then ω(n+m) = ω(n) + ω(m).

Proof. Imagine stacking the portion of the cylinder with points 0 through
m on top of the portion with points 0 through n, and rotating so that
the bottom point of the upper cylinder is directly above the top point
of the lower one. Then the net rotation from the bottom point of the
bottom cylinder to top point of the top cylinder will be the sum of the
two. If the total is less than 1/2, then it will equal the net rotation. �

Lemma 3. If |ω(n)| and |ω(m)| are less than 1/4, then ω(n −m) =
ω(n)− ω(m).

Proof. Without loss of generality, assume ω(n−m) +ω(m) is positive.
If ω(n−m)+ω(m) < 1/2 then the result follows from Lemma 2. If not,
then stacking cylinders as described in the proof of Lemma 2 results
in a total rotation over 1/2. As |ω(m)| < 1/4, it must be the case
that ω(n − m) > 0. Since ω(n − m) < 1/2 and |ω(m)| < 1/4, the
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total rotation is less than 1. Hence, the net rotation is obtained by
subtracting the sum from 1. That is,

ω(n) = 1− (ω(n−m) + ω(m)).

However, since ω(n−m) < 1/2, we have

ω(n) = 1− ω(n−m)− ω(m)

> 1− 1/2− ω(m)

= 1/2− ω(m)

> 1/4

We have thus reached a contradiction. �

Lemma 4. ω(1) = 1
φ
− 1 and ω(2) = 2

φ
− 1.

Proof. By construction, to go from point 0 to point 1, we rotate around
the cylinder 1/φ of a full rotation. As 1/φ is between 1/2 and 1, the
net rotation is given by 1

φ
− 1. Similarly, to get from point 0 to point

2 we do a total rotation of 2/φ. As 2/φ is between 1 and 3/2, the net
rotation is ω(2) = 2

φ
− 1. �

Lemma 5. ω(Fn) = Fn

φ
− Fn−1

The proof is an easy induction argument using Lemma 4 for the base
cases and Lemma 2 for the inductive step.

Lemma 6. {ω(Fn)} is an alternating sequence whose absolute values
converge monotonically to 0.

Proof. The following is a well-known closed-form expression for Fn:

Fn =
1√
5

(
φn − (−1)n

φn

)
Combining this with the formula given for ω(Fn) in Lemma 5 and
applying a little algebra gives us

ω(Fn) =
(−1)n+1

√
5

(
1

φn+1
+

1

φn−1

)
The result follows. �

We are now prepared to give the proof of Theorem 1.

Proof. Choose n minimal so that the theorem is false, and let i be an
integer so that |ω(i)| ≤ |ω(j)| for all j < Fn+1. Since we are assuming
the theorem is false, |ω(i)| < |ω(Fn)|. By Lemma 6, i can’t be a
Fibonacci number, because any Fibonacci number less than Fn would
have absolute net rotation larger than |ω(Fn)|. Hence, i is at least
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4 (the smallest non-Fibonacci number), and thus Fn+1 ≥ 5, making
Fn ≥ 3. Direct calculation using Lemma 5 shows ω(3) < 1/4. It now
follows from Lemma 6 that |ω(Fn)| < |ω(3)| < 1/4. Thus, |ω(i)| < 1/4.

We claim Fn < i. If not, then let m be the largest integer so that
Fm < i, and thus i < Fm+1. We know (by assumption) |ω(i)| < |ω(Fn)|
and by Lemma 6 we have |ω(Fn)| < |ω(Fm)|. Thus, i is a number
less than Fm+1 with |ω(i)| < |ω(Fm)|. The theorem thus fails for the
number m < n, contradicting the minimality of our choice of n.

The proof now breaks up into two cases. In the first case, ω(i) has
the same sign as ω(Fn). Since both |ω(i)| and |ω(Fn)| are less than
1/4, Lemma 3 implies ω(i − Fn) = ω(i) − ω(Fn). Since they have the
same sign, and |ω(i)| < |ω(Fn)|, then

|ω(i− Fn)| = |ω(i)− ω(Fn)| < |ω(Fn)| < |ω(Fn−1)|.
Since i < Fn+1, we have i − Fn < Fn+1 − Fn = Fn−1. In summary,
we have shown i − Fn is a number less than Fn−1 with |ω(i − Fn)| <
|ω(Fn−1)|. Hence, the theorem fails for n − 1, contradicting our mini-
mality assumption on n.

In the second case, ω(i) has opposite sign as ω(Fn). By Lemma 6
ω(Fn+1) and ω(Fn) also have opposite sign, and therefore ω(i) has the
same sign as ω(Fn+1). By Lemma 3, ω(Fn+1 − i) = ω(Fn+1) − ω(i).
Since they have the same sign and both have smaller magnitude than
|ω(Fn)|,

|ω(Fn+1 − i)| = |ω(Fn+1)− ω(i)| < |ω(Fn)| < |ω(Fn−1)|.
At the beginning of this proof we established Fn < i. It thus follows
that Fn+1 − i < Fn+1 − Fn = Fn−1. Hence, as in the previous case the
theorem fails for n − 1, contradicting our minimality assumption on
n. �


