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Abstract. We present a definition of thin position for a knot in a 3-manifold
with respect to a Heegaard surface, motivated by Scharlamenn and Thompson’s
definition of thin position for 3-manifolds [ST94], and Gabai’s definition of thin
position for knots in S3 [Gab87]. We then show that if a knot, K, in a 3-manifold,
M , whose exterior contains no meridional, planar, essential surfaces, is put in thin
position with respect to a strongly irreducible Heegaard surface then all thin levels
of K are essential in the complement of K. A Corollary of this is that if a small
knot, K, is put in thin position with respect to a strongly irreducible Heegaard
surface, F , then either K is in bridge position with respect to F , or it is a core of
one of the handlebodies bounded by F . This generalizes a Theorem of Thompson
for knots in S3 [Tho97].
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1. Introduction

In 1954, H. Schubert introduced a complexity for the position of a knot in S3,
called its bridge number [Sch54]. One way to define this is to put the knot into bridge
position, i.e. a position in which all of its maxima appear above all of its minima,
and count the number of maxima. 33 years after Schubert’s definition, D. Gabai
introduced another notion of complexity, called width [Gab87]. A knot is said to be
in minimal bridge position if it has been isotoped to have minimal bridge number,
and in thin position if it has been isotoped to have minimal width. In 1997, A.
Thompson established a relationship between bridge number and width by proving
that if a knot in S3, whose exterior contains no essential, meridional, planar surfaces,
is put in thin position then it must be in minimal bridge position [Tho97].
If a knot, K, is not in bridge position then there is a level 2-sphere which is just

above some maxima ofK, and just below some minima. Such a level 2-sphere is called
a thin level. It is tempting to try to prove Thompson’s theorem by showing that the
thin levels of any knot in thin position in S3 are essential in the knot complement.
Although there is currently no known counter-example to this statement, this seems
to be quite difficult to prove. Thompson’s approach is to show that no thin level can
compress completely to a set of boundary parallel annuli in the knot complement.
Hence, the result of a maximal set of compressions of a thin level is an essential,
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meridional, planar surface. If we assume that no such surface exists, then there must
have not been any thin levels to begin with.
Before generalizing Thompson’s result to manifolds other than S3, we must under-

stand what it means for a knot to be in bridge position or thin position in an arbi-
trary 3-manifold. A definition of bridge position is given by Morimoto and Sakuma in
[MS91]. The idea is to put a height function on the 3-manifold in which a Heegaard
surface, F , appears as a level surface. If F also separates the maxima of a knot, K,
from its minima, then we say that K is in bridge position with respect to F .
Defining thin position for a knot in a 3-manifold is more difficult. Various defini-

tions are presented, for example, in [Fei98] and [HS01]. In S3, Gabai’s definition of
the width of a knot is a simple, integer valued complexity. It seems difficult to find
a similar such complexity for knots in arbitrary 3-manifolds which has the desired
properties. Instead, we use a definition which is closer in spirit to Scharlemann and
Thompson’s definition of the width of a height function on a 3-manifold. This com-
plexity is a whole set of integers, where two such sets are compared lexicographically.
Our definition of width, given in Section 5, will be similar, and will be dependent on
both a height function and the position of a knot. If the height function is chosen so
that a Heegaard surface, F , appears as the unique level surface of maximal genus,
then this gives us a natural definition of what it means for a knot to be in thin
position with respect to F .
Section 7 contains the main results of this paper. These address the earlier question

regarding the essentiality of thin levels in a knot exterior. As we have mentioned,
not much is known in general about this question in S3, unless the knots under
consideration are assumed to be mp-small, (i.e. no essential, planar, meridional
surfaces in the knot complement), in which case Thompson’s Theorem tells us that
there are no thin levels at all. In other 3-manifolds, if we make precisely the same
restriction on the knots under consideration, we get a weaker, but perhaps more
enlightening statement:

Theorem 7.4 Let F be a strongly irreducible Heegaard surface for a closed, irre-
ducible 3-manifold, M , and K ⊂ M be an mp-small knot or link, which is in thin
position with respect to F . Then each thin level for K is incompressible and ∂-
incompressible in the complement of K.

A Corollary of this is our generalization of Thompson’s Theorem to arbitrary 3-
manifolds.

Corollary 7.5 Let W ∪F W ′ be a strongly irreducible Heegaard splitting of an irre-
ducible 3-manifold, M . If a small knot, K, is in thin position with respect to F , then
either K is in bridge position with respect to F , or it is a core of W or W ′.

Results similar to Corollary 7.5 were independently obtained by C. Feist [Fei98]
and C. Hayashi and K. Shimokawa [HS01]. Feist presents an integer-valued definition
of width, leading to a definition of thin position for a knot with respect to a Heegaard
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surface, F . To define this, he makes the restriction that the knots under consideration
must lie within a product neighborhood of the surface (which, he notes, can always
be arranged). He then shows that for small knots, thin position with respect to
F is bridge position. This is done by showing that if a thin level exists, it cannot
compress completely to a boundary-parallel annulus in the knot complement, and
hence, it compresses to some essential surface with meridional boundary.
Hayashi and Shimokawa, on the other hand, use a definition of width which is

closer in spirit to the one presented here for knots with respect to a height function.
(It should be noted that the complexity they use does not exactly accomplish all that
they claim, but it is not hard to modify it so that it works.) They show that the
thin levels of a thin presentation of a knot are indeed essential, meridional surfaces
in the knot complement. However, in the process of “thinning” a knot they lose
control of the underlying height function. Consequently, they are not able to present
a definition of thin position for a knot with respect to a fixed Heegaard surface.

Another statement that can be deduced from Theorem 7.4 is the following Corol-
lary, which establishes a relationship between width, bridge number, and tunnel
number (i.e. the Heegaard genus of the complement of a knot).

Corollary 7.6 Let F be a strongly irreducible Heegaard surface in an irreducible
3-manifold, M . Let K be a small knot in M , such that the genus of F is less than
the tunnel number of K. Then thin position of K with respect to F is bridge position
with respect to F .

2. Background material.

In this section, we give some of the standard definitions that will be used through-
out the paper. The expert in 3-manifold theory can easily skip this.
A 2-sphere in a 3-manifold which does not bound a 3-ball on either side is called

essential. If a manifold does not contain an essential 2-sphere, then it is referred to
as irreducible.
A loop on a surface is called essential if it does not bound a disk in the surface.

Given a surface, F , in a 3-manifold, M , a compressing disk for F is a disk, D ⊂ M ,
such that F ∩D = ∂D, and such that ∂D is essential on F . If we let D × I denote
a thickening of D in M , then to compress F along D is to remove (∂D)× I from F ,
and replace it with D × ∂I.
A compression body is a 3-manifold which can be obtained by starting with some

surface, F (not necessarily connected), forming the product, F × I, attaching some
number of 2-handles to F × {1}, and capping off all resulting 2-sphere boundary
components with 3-balls. The boundary component, F × {0}, is often referred to as
∂+. The other boundary component is referred to as ∂−. If ∂− = ∅, then we say the
compression body is a handlebody. A compression body is non-trivial if it is not a
product.
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A surface, F , in a 3-manifold, M , is a Heegaard surface for M, if F separates M
into two compression bodies, W , and W ′, such that F = ∂+W = ∂+W

′. Such a
splitting is non-trivial if both W and W ′ are non-trivial.

Definition 2.1. A separating surface, F , in a 3-manifold, M , is strongly irreducible
if every compressing disk for F on one side intersects every compressing disk for F
on the other.

Lemma 2.2. If M contains a non-trivial strongly irreducible Heegaard surface, then
∂M is incompressible in M .

This result is typically proved by appealing to a Lemma of Haken ([Hak68], see
also [Jac77]), but notice that it also follows from the following well-known result:

Theorem 2.3. Let M be a 3-manifold which contains a non-trivial strongly irre-
ducible Heegaard surface, F , and an essential surface, S. Then F can be isotoped so
that all curves of F ∩ S are essential on both surfaces.

Lemma 2.2 follows from this Theorem by noting that a compressing disk for the
boundary ofM is an essential surface, but no compressing disk for the boundary of a
manifold can be made disjoint from a Heegaard surface. In Section 6 we will present
a generalization of Lemma 2.2, which will be proved by appealing to a result which
is analogous to Theorem 2.3.

3. Thin Position for 3-manifolds

In this section we review the results of Scharlemann and Thompson from [ST94].
Our approach is slightly different, in the sense that the complexities we use are
different than those of the aforementioned paper. In the end, however, we will show
that the results are the same.
Let h : M → I be a Morse function on a 3-manifold, M . Let {t′i} denote the

critical values of h, and for each i, choose some ti ∈ (t
′

i, t
′

i+1). For all t ∈ I, let
Ft = h−1(t).

Definition 3.1. For each surface F ⊂M , let c(F ) =
∑

j

(2− χ(F j))2, where {F j} is

the set of components of F .

Note that this complexity is defined so that if Fti+1
is obtained from Fti by a

compression then c(Fti+1
) < c(Fti), and so that if Fti is a union of 2-spheres then

c(Fti) = 0.

Definition 3.2. If i is a number such that c(Fti) > c(Fti−1
) and c(Fti) > c(Fti+1

),
then we say the surface Fti is a thick level of h. Similarly, if c(Fti) < c(Fti−1

) and
c(Fti) < c(Fti+1

), then we say the surface Fti is a thin level of h.

Definition 3.3. The width of h, w(h), is defined to be the set of integers {c(Fti)|Fti

is a thick level of h}, where repetitions are included, and the set is ordered in non-
increasing order.
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The concept of width gives us a way of comparing two Morse functions on the same
3-manifold. We will say that h1 < h2 if w(h1) < w(h2), where the latter comparison
is made lexicographically.

Lemma 3.4. Every 3-manifold admits a Morse function of minimal width.

Proof. This follows immediately from the fact that every decreasing sequence of sets
of integers, ordered lexicographically, must terminate. ¤

Definition 3.5. A thin decomposition of a 3-manifold, M , is a sequence of pairwise
disjoint surfaces, {Fi}, where the sets {F2i+1} and {F2i} are the thick and thin levels,
respectively, of a Morse function, h, such that w(h) is minimal.

Note that if h is any Morse function on M , L is a thin level of h, and H is
the next (or previous) thick level, then the submanifold of M cobounded by L and
H is a compression body, W , such that ∂−W = L, and ∂+W = H. Hence, h
determines a Heegaard-Scharlemann-Thompson (HST) splitting, i.e. a sequence of
pairwise-disjoint surfaces, {Fi}, where for each odd i, Fi is a non-trivial Heegaard
splitting of the submanifold cobounded by Fi−1 and Fi+1 (Note that we will always
begin our indexing with i = 0, and assume that F0 is the first thin level of h.
Using this convention, F0 = ∅ for closed 3-manifolds). Conversely, for any HST
splitting, {Fi}, there is a height function, h, such that the sets {F2i+1} and {F2i}
are the thick and thin levels of h. Since the width of h only depends on its set of
thick levels, this observation lets us work with HST splittings, rather than Morse
functions. Henceforth, we may abuse terminology slightly by talking about the width
of an HST splitting, rather than the width of a Morse function for which the HST
splitting consists of its thick and thin levels. A thin decomposition of a 3-manifold
is then an HST splitting of minimal width.
The next Theorem is due to Scharlamenn and Thompson. We include a brief proof

only because our definition of width is slightly different than theirs.

Theorem 3.6. (Scharlemann-Thompson [ST94]) Let {Fi} be a thin decomposition
of a 3-manifold, M . Then for each odd i, Fi is a non-trivial strongly irreducible
Heegaard splitting of the submanifold of M cobounded by Fi−1 and Fi+1.

Proof. Suppose this is not true. Then for some odd number, p, there exists disks, D
and E, such that:

(1) D and E are compressing disks for Fp,
(2) D lies in the submanifold of M cobounded by Fp−1 and Fp,
(3) E lies in the submanifold of M cobounded by Fp and Fp+1, and
(4) D ∩ E = ∅.

Let FD be the surface obtained from Fp by compression along D, FE the surface
obtained from Fp by compression along E, and FDE the surface obtained from Fp by
compression along both D and E.
We now alter the sequence, {Fi}. There are four cases:
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(1) FD 6= Fp−1, FE 6= Fp+1.
Remove Fp from {Fi}. In its place, insert {FD, FDE, FE} and reindex.

(2) FD = Fp−1, FE 6= Fp+1.
Replace {Fp−1, Fp} with {FDE, FE}.

(3) FD 6= Fp−1, FE = Fp+1.
Replace {Fp, Fi+1} with {FD, FDE}.

(4) FD = Fp−1, FE = Fp+1.
Replace {Fp−1, Fp, Fp+1} with FDE and reindex.

In all cases, it is a routine matter to check that we have defined a new HST splitting,
G. The set w(G) is obtained from the set w({Fi}) by removing some element, and
replacing it with at most two smaller numbers. Hence, under the lexicographical
ordering, w(G) < w({Fi}). ¤

Scharlemann and Thompson then show that Theorem 3.6 and Lemma 2.2 imply:

Theorem 3.7. (Scharlemann-Thompson [ST94]) Let {Fi} be a thin decomposition
of a 3-manifold, M . Then for each even i, Fi is incompressible in M .

Corollary 3.8. A thin decomposition of a non-Haken 3-manifold is a strongly irre-
ducible Heegaard surface.

An alternate way to state this Corollary would be to say that if h is a Morse func-
tion on a non-Haken 3-manifold, M , such that w(h) is minimal, then h has precisely
one thick level. This is completely analogous to Thompson’s theorem [Tho97], which
says that if K is a small knot such that w(K) is minimal, then K has precisely one
thick level. (In the next section we will define the terms thick level and width for
knots in S3.)
Still another way to view Corollary 3.8 is to say that a Heegaard surface for a

non-Haken 3-manifold which is not strongly irreducible cannot define a generalized
Heegaard splitting of minimal width. From this point of view one can see that
Corollary 3.8 is equivalent to a result of Casson and Gordon [CG87], which says that
a Heegaard splitting of a non-Haken 3-manifold which is not strongly irreducible
cannot be a minimal genus splitting.

4. Thin Position for Knots in S3

Suppose that K ⊂ S3 is an arbitrary knot or link, and h : S3 → I is the standard
height function (so that for all t ∈ (0, 1), h−1(t) is a 2-sphere). Isotope K so that
h is a Morse function when restricted to K. Let {t′i} denote the critical values of
h restricted to K, and let ti be some point in the interval (t

′

i, t
′

i+1). Finally, let
Ft = h−1(t).

Definition 4.1. If K ⊂ M is some properly embedded 1-manifold, then let MK

denote M with a regular neighborhood of K removed. If X is any subset of M , then
let XK =MK ∩X.
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Note that since each level, Ft, is a sphere, |K ∩Ft| = 2−χ((Ft)K). This motivates
us to define the following complexity:

Definition 4.2. For all t, let cK(Ft) = 2− χ((Ft)K).

The definitions of thick level, thin level, and width that we will use are now exactly
the same as those given in Section 3, where one substitutes the function cK for each
occurrence of the function c. Since the same height function will be used for all knots
in S3, we will consider the function, w, to be a complexity for positions of knots,
rather than for Morse functions, and write w(K), rather than w(h).
As in the previous section, our definition of width is an ordered set of integers.

Gabai’s original definition (see [Gab87]) of w(K) is the quantity 1

2

∑

i

cK(Fti). Our

definition is equivalent, in the sense that it can be used to rule out certain configu-
rations for knots with minimal width. In a moment we will make this more precise.

Definition 4.3. A knot, K, is said to be in thin position if it have been isotoped so
that w(K) is minimal.

Definition 4.4. A high disk for a level, Ft is a disk, D, such that ∂D = α∪β, where
α ⊂ K, β ⊂ Ft, and a collar of β in D lies above Ft. Low disks are defined similarly.

The salient feature of both our definition of thin position for knots in S3 and
Gabai’s is that if K is in thin position, then one never sees disjoint high and low
disks for K, or high and low disks that meet in a point of K (otherwise, we could
perform one of the moves depicted in Figure 1 to obtain a position of K with smaller
width).

5. Thin Position for knots in 3-manifolds

We now synthesize the definitions given in the previous two sections. Suppose
that K ⊂ M is an arbitrary knot or link, and h : M → I is a Morse function on a
3-manifold, M . Isotope K so that h is a Morse function when restricted to K, and
so that no critical value of h coincides with a critical value of h|K . Let {t

′

i} denote
the union of the critical values of h, and the critical values of h|K . Let ti be some
point in the interval (t′i, t

′

i+1). For all t, let Ft = h−1(t).

Definition 5.1. For any surface F in M , let CK(F ) =
∑

j

(2−χ((Fj)K))
2, where the

sum is taken over all components, {Fj}, of F .

We now define thick levels, thin levels, and width exactly as in Section 3, using the
function, CK , instead of c. Width now depends on both the position of a knot, K,
and on a choice of Morse function, h, so it will be written w(K;h).

Definition 5.2. If K has been isotoped so as to minimize w(K;h), then we say K
is in thin position with respect to h.
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In this paper we will mainly be concerned with height functions, h, associated to
a Heegaard surface, F , in the sense that F is the only thick level of h.

Definition 5.3. Let F be a Heegaard surface for a 3-manifold, M . If we choose a
height function, h, associated to F , and a position of a knot, K, so that w(K;h) is
minimal, then we say that K is in thin position with respect to F .

As in S3, we also make the following definition:

Definition 5.4. If h is a height function associated to a Heegaard surface, F , then
we say a knot, K, is in bridge position with respect to F if F is the unique thick level
of K with respect to h, i.e. if all of the maxima of K are above F , and all of the
minima of K are below.

It is the goal of this paper to understand when thin position for K with respect
to a strongly irreducible Heegaard surface conincides with bridge position.

6. Heegaard splittings of a pair, (M,K)

To proceed, we must understand arcs in a compression body. IfW is a compression
body, recall that W can be built by starting with a product, F × I, and attaching 2-
and 3-handles to F × {1}. Anything that remains of F × {1} after the attachment
becomes part of ∂−W . We say an arc, k, is straight in W if k = {p}× I, where p ∈ F
is a point such that {p} × {1} ∈ ∂−W .
We are now ready to generalize the definition of a compression body:

Definition 6.1. A K-compression body, (W ;K), is a compression body,W (possibly
a product), and a 1-manifold, (K, ∂K) ⊂ (W,∂W ), such that

(1) K is a disjoint union of embedded arcs
(2) each arc of K has at least one endpoint on ∂+W

(3) if k is an arc of K with ∂k ⊂ ∂+W , then there is a disk, D ⊂ W , with
∂D = k ∪ α, D ∩K = k, and D ∩ ∂+W = α.

(4) if k is an arc of K with one endpoint on ∂+W , then k is straight.

A K-compression body, (W ;K), is non-trivial if either W is not a product, or at
least one arc of K is not straight.

Definition 6.2. If K is a 1-manifold properly embedded in a 3-manifold, M , then
a Heegaard splitting of the pair, (M,K), is an expression of M as a union of Ki-
compression bodies, (W1;K1) and (W2;K2), such that ∂+W1 = ∂+W2, and K =
K1∪K2. Such a splitting is non-trivial if both (W1;K1) and (W2;K2) are non-trivial.

When the context is clear, we will refer to the surface, ∂+W , as a Heegaard surface
of (M ;K).

Definition 6.3. Suppose F is a surface in a 3-manifold M , and K is some properly
embedded 1-manifold in M , transverse to F . A relative compressing disk for F is a
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disk, D, such that ∂D = α ∪ β, where D ∩K = α, and D ∩ F = β. If there are no
relative compressions for some surface, then we say that it is relatively incompressible.

Definition 6.4. Suppose F is a separating surface in a 3-manifold,M , andK is some
properly embedded 1-manifold in M , transverse to F . Then F is weakly reducible
with respect to K if there exists disks, D and E, on opposite sides of F , such that
either

(1) D and E are disjoint compressing disks for FK

(2) D and E are relative compressing disks for F that are either disjoint, or meet
in a point of K

(3) D is a relative compression for F , and E is a disjoint compressing disk for
FK in MK

(4) D is a compressing disk for FK inMK , and E is a disjoint relative compressing
disk for F .

We say F is strongly irreducible with respect to K if it is not weakly reducible.

The following is a generalization of Theorem 2.3:

Lemma 6.5. Suppose F is a Heegaard surface of (M ;K), which is strongly irre-
ducible with respect to K, and (S, ∂S) ⊂ (M,∂M ∪K) is an essential surface. Then
F can be isotoped rel K so that no arc of S ∩F cobounds a relative compressing disk
for F , and so that no loop of S ∩ F bounds a compressing disk for FK in MK.

Proof. The proof is similar to many of the standard arguments in 3-manifold topology.
It is a standard construction to define a height function, h :M → I, so that h−1(1

2
) =

F , and so that for every t ∈ (0, 1

2
) ∪ (1

2
, 1), there is a compression body, Wt ⊂ M ,

such that ∂+Wt = F , and ∂−Wt = h−1(t).
Let t1 = inf

t<1/2
{t|(Wt;T1 ∩ Wt) is a trivial relative compression body}, and let

t2 = sup
t>1/2

{t|(Wt;T1∩Wt) is a trivial relative compression body}. Let {si} denote the

points of the interval [t1, t2] where h
−1(t) is not transverse to S. If for some point, t,

of the subinterval, [si, si+1], there is an arc of S ∩ h
−1(t) which cobounds a relative

compressing disk for h−1(t), or a loop of S ∩h−1(t) which bounds a compressing disk
for h−1(t)K in MK , on the same side of h

−1(t) as h−1(0), then label this subinterval
“A”. Similarly, if there is a compressing or relative compressing disk for h−1(t),
bounded or cobounded by a component of S ∩ h−1(t), on the same side of h−1(t) as
h−1(1), then label the subinterval “B”. As F is strongly irreducible with respect to
K, and h−1(t) is parallel to F for all t ∈ (t1, t2), we know that h

−1(t) is strongly
irreducible with respect to K in this range. Hence, there does not exist a value
of i such that the subinterval [si, si+1] has both of the labels “A” and “B”, since
compressions and relative compressions, whose boundaries are contained in S, on
opposite sides of h−1(t), form a weak reduction pair. Similarly, using an argument
identical to that of Lemma 4.4 of Gabai’s paper, [Gab87], one can show that adjacent



10 DAVID BACHMAN

subintervals cannot have different labels. Now, to conclude that there is an unlabelled
subinterval, we must show that there is at least one subinterval with each label.
There are several cases to consider, depending on exactly what happens at t1 and

t2. Suppose first that there is a minimum of K at t1. Then for values of t just after
t1, we see a relative compressing disk for h

−1(t), contained in S, on the same side of
h−1(t) as h−1(0). Hence, the first subinterval of [t1, t2] would have the label “A”.
If, instead, we see h−1(t)K compress as t decreases from

1

2
to t1, then for values

of t just after t1 there is a compressing disk, D, for h
−1(t)K which is disjoint from

S, and on the same side of h−1(t) as h−1(0). If, for t just after t1, h
−1(t) does not

intersect S as stated in the theorem, then there are two cases:

(1) There is an arc of S ∩h−1(t) which cobounds a relative compressing disk, D′,
for F . Then ∂D′∩∂D = ∅, and so by strong irreducibility, D′ must be on the
same side of h−1(t) as D. Hence, again the first subinterval of [t1, t2] would
have the label “A”.

(2) There is a loop of S ∩ h−1(t) which bounds a compressing disk, D′′, for FK .
As in Case 1, ∂D′′ ∩ ∂D = ∅, so we may conclude that D′′ is on the same
side of h−1(t) as D. Once again, the first subinterval of [t1, t2] would have the
label “A”.

A symmetric argument shows that the last subinterval of [t1, t2] must have the
label “B”. By the remarks which precede the last paragraph, we may now conclude
that there is an unlabelled subinterval. For values of t in this subinterval, there is no
compressing or relative compressing disk bounded or cobounded by any component
of S ∩ h−1(t). ¤

We are now prepared to present our generalization of Lemma 2.2.

Lemma 6.6. If F is a Heegaard surface of (M ;K), which is strongly irreducible with
respect to K, then (∂M)K is incompressible in MK, and ∂M is relatively incompress-
ible in M .

Proof. Suppose that D is a compressing disk for (∂M)K in MK , or a relative com-
pressing disk for ∂M . Then we may apply Lemma 6.5 to isotope F so no loop of
D ∩ F bounds a compressing disk for FK . Hence, if γ is a loop of D ∩ F which is
innermost on D, then γ must bound a disk, E, on FK . Let α be a loop of D∩F which
is innermost on E. Then α bounds a subdisk of E which we can use to surger D.
This eliminates one component of D∩F . We may now repeat the process, eventually
removing all loops of D ∩ F .
If D were a compressing disk, then we would have now made D and F disjoint. If,

instead,D were a relative compressing disk, then there may still be arcs of intersection
remaining. Our previous application of Lemma 6.5 had put us in a position such that
no arc of D∩F cobounds a relative compressing disk for F . Let β be an arc of D∩F
which is outermost on D. Then β cobounds a relative compressing disk for F . As
this is a contradiction, we conclude that there are now no arcs of D ∩ F . In any
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case, D has become a compressing or a relative compressing disk for the negative
boundary component of a relative compression body, which is impossible. ¤

7. When thin is bridge

Definition 7.1. [Rieck-Sedgwick] A 1-manifold (K, ∂K) ⊂ (M,∂M) is mp-small if
there are no planar, incompressible, non-boundary parallel, meridional surfaces in
MK .

Theorem 7.2. Let F be a strongly irreducible Heegaard surface for a closed, irre-
ducible 3-manifold, M , and K ⊂ M be an mp-small knot or link, which is in thin
position with respect to F . Then each thick level for K is a strongly irreducible
Heegaard surface for the submanifold of (M ;K) cobounded by consecutive thin levels.

Proof. If the Theorem is false, then there are disks, D and E, for some thick level, G,
of K, as in Definition 6.4, which lie in a submanifold ofM cobounded by consecutive
thin levels. We will say a compressing disk for GK in MK is true if it is also a
compressing disk for G. Otherwise, it is false.
We now check all cases (up to symmetry):

Case 1. D and E are relative compressing disks. In this case, we can do one of
the moves depicted in Figure 1, thereby producing a position of K whose width is
smaller.

Case 2. D and E are true compressing disks. Then G must be parallel to F , and
hence, D and E are isotopic to disjoint compressing disks for F . As F was assumed
to be strongly irreducible, this is a contradiction.

Case 3. D and E are false compressing disks. Let D′ denote the subdisk of
G bounded by ∂D, and E ′ the subdisk of G bounded by ∂E. There are now two
subcases (up to symmetry):

Subcase 3.1. D′ ∩E ′ = ∅. Note that D ∪D′ is a sphere which bounds a ball, B.
Inside B there must be a relative compressing disk, H, since ∂D is essential on GK .
Similarly, inside the sphere E ∪E ′, there must be a relative compressing disk, L. As
D′ ∩ E ′ = ∅, it must be that H ∩ L = ∅, so we are reduced to Case 1 above.

Subcase 3.2. E ′ ⊂ D′. This is by far the most difficult case. To obtain a
contradiction, we begin by mimicking Thompson’s argument from [Tho97]. First, we
assume that D and E are chosen to be outermost, in the sense that there does not
exist a compressing disk, E ′′ (say), for GK , on the same side of G as E, such that
∂E ′′ bounds a disk on G which contains E ′. Let A denote the annulus which is the
closure of D′ − E ′. Let S be the sphere, D ∪ A ∪ E.
Compress S as much as possible in MK , to obtain a collection of spheres, P̃ , in

M . Let P be an innermost component of P̃ , in the sense that the ball bounded by
P in M does not contain any other component of P̃ . Since K is mp-small, and PK
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Figure 1. Moves which produce lower width.

is incompressible in MK , it must be that P is relatively compressible in M . Let R
then denote a relative compressing disk for P .
We now reverse the compressions used to obtain P̃ from S. Each time a com-

pression is reversed, we attach a tube to some components of P̃ . These tubes may
intersect R, but only in its interior. In the end, R persists as a disk in M such that
∂R = α ∪ β, where K ∩R = α, β ⊂ S, and a collar of β in R is disjoint from S.
As β is an arc on S, and S is made up of two disks, D and E, which are disjoint

from K, and an annulus, A, we may isotope R so that β ⊂ A. We now claim that
α meets at least one thin level of K. If not then there are two cases to consider,
depending on which side of G contains a collar of β in R. LetWD be the compression
body cobounded by G and the previous thin level, which contains D. LetWE denote
the compression body cobounded by G an the next thin level, containing E.

Subcase 3.2.1. A collar of β in R is contained in WD. As in subcase 3.1, there
is a relative compression, L, inside the sphere, E ∪ E ′. But L ∩ G ⊂ E ′, whose
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interior is disjoint from A. As A contains β, we conclude that R ∩ L = ∅, and are
basically reduced to case 1. (R may not actually be a relative compressing disk,
since the interior of R may meet G. However, we can still use R to guide one of the
width-lowering isotopies of K depicted in figure 1.)

Subcase 3.2.2. A collar of β in R is contained in WE. We first claim that α∩G
must be empty. Otherwise there would be an arc, β ′, of R∩G, and a subarc, α′ ⊂ α,
which cobounded a subdisk, R′, of R, such that a collar of β ′ in R′ lies in WD.
Furthermore, there exists such a β ′ which is disjoint from E ′, so we are reduced to
the previous case, where there is a relative compressing disk, L, contained in the ball
bounded by E ∪ E ′, which can be paired with R′ to form a width-reducing move.
We conclude then that α lies entirely in WE. Let L

′ be a disk in WE such that
∂L′ = α ∪ β, where L′ ∩ K = α and L′ ∩ G = β ⊂ A. (If it were not for the fact
that the interior of R may not lie entirely in WE, we could take L

′ = R.) Let δ be
any arc in GK joining the interior of β to ∂E. Then a frontier of a neighborhood of
L′ ∪ δ ∪ E in WE contains a disk which is “more outermost” than E, contradicting
our assumption.

We conclude then that α meets at least one thin level of K. Let β ′′ be an arc of
intersection of R with the thin levels of K, which is outermost on R. ∂β ′′ bounds
a subarc, α′′ ⊂ α. We claim that α′′ must meet some thick level. If not, then α′′

lies in some relative compression body, W (cobounded by a thick and a thin level of
K). But α′′ is then a subarc of K in W , both of whose endpoints are on ∂−W , a
contradiction.
Let S denote the thin level of K that contains β ′′, and let T denote the thick level

whose intersection with α′′ is non-trivial. Let R′′ be the subdisk of R bounded by
β′′ ∪ α′′. Use R′′ to guide an isotopy of K, reducing |K ∩ S| by 2, and |K ∩ T | by at
least 2. It is now easy to check that such a move reduces width.

Case 4. D is a relative compressing disk, and E is a false compressing disk. The
boundary of a neighborhood of D in M is a sphere, which is cut into two disks by
G. One of these disks, D′, is a false compressing disk for G, on the same side of G as
D. Since E ∩D = ∅, we may conclude that E ∩D′ = ∅, and hence we are reduced
to Case 3 above.

Case 5. D is a relative compressing disk, and E is a true compressing disk. Our
proof will be almost identical to that of Theorem 3.6. First, notice that the thick and
thin levels of K form an HST splitting of (M ;K), i.e. a sequence of pairwise-disjoint
surfaces, {Fi}, where for each odd i, Fi is a Heegaard splitting of the pair which
consists of the submanifold cobounded by Fi−1 and Fi+1, and the subset of K which
lies in this submanifold. The sets, {F2i−1} and {F2i} are then the thick and thin
levels of K. Our goal is to construct a new HST splitting, S, of (M ;K), whose width
is smaller than the width of {Fi}. (As before, the width of a HST splitting, {Fi}, is
defined to be w(K,h), where h is chosen so that the thick and thin levels of K with
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respect to h are precisely the sets, {F2i−1} and {F2i}). The one caveat is that we
must be careful that if h′ is a height function such that the thick and thin levels of
K with respect to h′ are S, then h′ itself must have only one thick level, namely F .
This is necessary in order to contradict the assumption that K was in thin position
with respect to F (rather than with respect to just any height function). This part
of the proof is dependent on the observation that the thick levels of h′ are a subset
of the thick levels of K with respect to h′.
Let p be the odd number such that G = Fp. Let FD be the surface obtained from

Fp by relative compression along D (i.e. use D to guide an isotopy of Fp, removing
two points of intersection with K), FE the surface obtained from Fp by compression
along E, and FDE the surface obtained from Fp by relative compression along D and
compression along E.
We now alter the HST splitting via one of the four operations defined in the proof

of Theorem 3.6. The proof that this decreases width is precisely the same. We
will denote the new HST splitting by S. Let h be a height function such that the
thick and thin levels of K with respect to h alternate in {Fi}, and let h

′ be a height
function such that the thick and thin levels of K with respect to h′ alternate in S.
We now show that if we ignore K, h′ has no more thick levels than h. The only

thick levels of S that were not thick levels of {Fi} are (at worst) FD and FE. But,
when we ignore K, FD is parallel to Fp, so the introduction of FD as a thick level
for S cannot have caused the introduction of a new thick level for h′. Also, again
ignoring K, FE can be obtained from FD by a compression. Since FD was not a new
thick level for h′, then the same must be true of FE.
We must still show that F is a thick level of h′. As previously noted, the thick

levels of h are a subset of the thick levels of {Fi}. Lets suppose that q is the odd
integer such that F = Fq. If q 6= p then Fq is a thick level of both {Fi} and S. If
q = p, then FD, which is parallel to Fp (and hence to F = Fq), is a thick level.

Case 6. D is a false compressing disk, and E is a true compressing disk. Let D ′

denote the subdisk of G bounded by ∂D. As D ∩ E = ∅, it must be the case that
D′ ∩ E = ∅. As described in subcase 3(a), inside the sphere, D ∪D′, there must be
a relative compressing disk, H. As D′ ∩ E = ∅, we may conclude that H ∩ E = ∅,
and we are reduced to Case 5 above.

¤

The proof of the next Theorem is almost identical to that of Theorem 3.7.

Theorem 7.3. Let F be a strongly irreducible Heegaard surface for a closed, ir-
reducible 3-manifold, M , and K ⊂ M be an mp-small knot or link, which is in
thin position with respect to F . Then each thin level for K is incompressible and
∂-incompressible in the complement of K.

Proof. Let {Fi} denote the HST splitting which consists of the thick and thin levels
of K. For each odd i, let Mi denote the submanifold of M cobounded by Fi−1 and
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Fi+1. Suppose c is a loop that bounds a compressing disk, or an arc which cobounds
a relative compressing disk, for some surface, Fq, where q is even. If c is a loop, then
let C denote a disk in M , such that ∂C = c. If c is an arc, then let C be a disk
in M such that ∂C = γ ∪ c, where K ∩ C = γ. In either case, choose C so that
|C ∩ (

⋃

even i

Fi)| is minimal.

It follows from Theorem 7.3 and Lemma 6.6 that for each odd i, ∂Mi is incom-
pressible and relatively incompressible inMi. Hence, C cannot lie entirely inMq−1 or
Mq+1. We conclude then that there is some loop or arc of intersection of the interior
of C with

⋃

even i

Fi. Let α denote an innermost such loop. Let C
′ denote the subdisk

of C bounded by α. C ′ lies inMp, for some odd number, p. As ∂Mp is incompressible
in Mp, α must bound a disk, A, on ∂Mp.
Now, let β be an innermost loop of C ∩A, and let A′ be the subdisk of A bounded

by β. Then we can use A′ to surger C, and thereby obtain a new disk, with the same
boundary as C, contradicting our minimality assumption.
We conclude then that c cannot be a loop, and if c is an arc, then C contains no

loops of intersection with
⋃

even i

Fi. Let δ then denote an arc of intersection which is

outermost on C. δ and a subarc of α cobound a subdisk, C ′′, of C. C ′′ is then a
relative compressing disk for ∂Mi, for some i, contradicting Lemma 6.6. ¤

The following Corollary, which is the appropriate generalization of Thompson’s
Theorem [Tho97] to knots in 3-manifolds other than S3, is an immediate consequence
of Theorem 7.4.

Corollary 7.4. Let W ∪F W ′ be a strongly irreducible Heegaard splitting of an ir-
reducible 3-manifold, M . If a small knot, K, is in thin position with respect to F ,
then either K is in bridge position with respect to F , or it is a core of W or W ′.

Proof. It follows from [CGLS87] that if K is small, then it is also mp-small. Hence,
Theorem 7.4 implies that the thin levels of K with respect to F are essential in the
complement of K. But again, it then follows from [CGLS87] that since K is small,
the only possibility for a thin level is a boundary parallel torus, T , in MK . If such a
torus is a level of a height function associated to F , then there must be a compression
body between F and T . This is equivalent to saying that K is a core of one of the
handlebodies bounded by F .
If K is not isotopic to a core of W or W ′, then we conclude that K has no thin

levels. Hence, there must be a unique thick level, namely, F . This is the precise
definition of what it means for K to be in bridge position with respect to F . ¤

Corollary 7.5. Let F be a strongly irreducible Heegaard surface in an irreducible
3-manifold, M . Let K be a small knot in M , such that the genus of F is less than
the tunnel number of K. Then thin position of K with respect to F is bridge position
with respect to F .
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Proof. Corollary 7.5 says that if thin position for a small knot, K, with respect to
F is not bridge position, then K is isotopic to a core of one of the handlebodies
bounded by F . But then F is a Heegaard splitting of MK , so the genus of F is at
least the tunnel number of K. ¤
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