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We report results from a guided reinvention of the definition of sequence convergence conducted in 

three second-semester calculus classes. This report contributes to the growing body of research on how 

students come to understand and reason with formal limit definitions, focusing on the emergence of 

students’ understanding of the epsilon quantity, conceived in terms of error bounds. Using Sfard's 

framework of the condensation of processes to entities, we mapped the possible conceptual trajectories 

followed by the students in the study. In this report, we detail our map, these trajectories and students’ 

reasoning about other aspects of the formal definition, and the influence of reasoning about 

approximations and error analyses in students’ progression.  
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Introduction 
Limit concepts are central to the study of calculus, but students often develop only a weak 

understanding of limits that does not support their learning or reasoning about other central concepts in 

calculus (Davis, 1986; Oehrtman, 2009; Sierpinska, 1987; Tall, 1980; Tall, 1981).  Recently, a series of 

guided reinventions where pairs of students reinvented formal definition for concepts related to limits 

have provided multiple insights into how students come to understand limits (Hart-Weber et al., 2011; 

Martin & Oehrtman, 2010; Martin et al., 2011; Martin et al., 2012; Oehrtman et al., 2011; Swinyard, 

2011). We employed techniques of the guided reinvention heuristic from Realistic Mathematics 

Education (Gravemeijer, 1998) in three second-semester calculus classrooms to engage students in 

reinventing the formal definition of sequence convergence, typically expressed as
1
,  

A sequence (an) converges to L provided that for every ε > 0, there exists an N such that  

| an – L | < ε whenever n ≥ N. 

We posed the following research questions: 1) What cognitive challenges do students encounter while 

reinventing the formal definition of sequence convergence? 2) How do students resolve these cognitive 

challenges? 3) To what extent and in what ways do the students use approximations and error analyses 

in their reinvention? 4) How does a guided reinvention of the definition of sequence convergence in a 

                                                 
1
 The definition commonly stated in this form presumes without explicit statement that   is quantified as a real number 

while N and n are quantified as natural numbers. 



classroom differ from a guided reinvention with a pair of students? This research report addresses the 

first three questions focusing on the students’ emerging understanding of the quantity typically 

represented by   in the formal definition. 

Literature Review 
Early literature on how students understand limits focused on informal reasoning , conceptual 

barriers, and misconceptions (e.g., Bezuidenhout, 2001; Cornu, 1991; Davis & Vinner, 1986; Ferrini-

Mundy & Graham, 1994; Monaghan, 1991; Tall, 1992; Williams, 1991).  Cottrill et al. developed a 

genetic decomposition outlining a sequence of 7 mental constructions that students might make when 

coming to understand limit concepts (1996).  This decomposition was one of the first attempts to 

understand how students reason with formal definitions.  Unfortunately he was only able to find 

evidence support the first four mental constructions and was not able to collect any data on the last 

three.   

Building on research by Williams (1991) and Tall and Vinner (1981) Oehrtman (2009) identified 5 

different metaphors students use when attempting to reason with limits: "collapse in dimension", 

"approximation", "closeness in spatial domain", "physical limitations," and "infinity as a number." 

Oehrtman (2008) found that focused instruction could systematize students’ use of approximation 

metaphors enabling more powerful subsequent reasoning about how limit structures were manifest in 

the various concepts developed throughout introductory calculus. When one teaches reinforcing the 

systematic exploration of approximation and error analyses reflecting limit structures in calculus, we 

will say that one is teaching using the approximation framework.  Oehrtman (2008) also hypothesized 

that such a structural approach to calculus could establish a strong conceptual foundation for later 

formalization of limit concepts, such as creating and reasoning with rigorous definitions.   

Very little existing research provides insight into how students do come to understand the formal 

definition. Multiple teaching experiments have been performed in the last few years to help better 

understand how students do come to understand the formal definition by having pairs of students 

reinvent the formal definition of convergence of a sequence of numbers (Hart-Weber et. al., 2011; 

Martin, Oehrtman 2010, Martin et. al., 2011; Martin et. al. 2012, Oehrtman et.al., 2011; Swinyard & 

Larsen, 2012). These teaching experiments begin with students constructing a rich set of examples of 

sequences that converge to a limit L and examples of sequences that do not converge to L serving an 

explicit external representation of their concept image of convergence of a sequence. Students then 

engage in an iterative process in which they are asked to create a definition, evaluate the definition 

against examples and non-examples, identify conflicts with their set of examples, then attempt to 

resolve these conflicts (Oehrtman et al., 2011).  Oehrtman et al. identified problems and problematic 

issues that students encountered when reinventing formal limit convergence.  Problems are cognitive 

challenges that students explicit identified as causing conflict between their concept image and their 

stated definition.  Problematic issues are cognitive challenges that students do not produce cognitive 

conflict in their concept image, but are in conflict with the formal definition. 

One of the more complex aspects of students developing an understanding of the formal definition 

appears to be their conception of the quantity ε and its relation to other elements in the definition.  

Swinyard and Larsen have proposed that an important aspect to coming to understanding the formal 

definition is that students develop a y-first perspective.  When students are reasoning informally with 

they traditionally start with an x-first perspective, but in the formal definition we consider a bound on 

the range of y-values first and then consider values on the x-axis (Swinyard & Larsen, 2012).  They 

also noted that the first four step of the genetic decomposition involve an x-first perspective. 

This research proposes a model of when students adopt a y-first perspective what are possible 

trajectories that they could possibly take by focusing on error bounds.  We provide a classification of 

different ways that students learn to reason with error bounds and the possible progression that students 

may take when reinventing the formal definition of sequence convergence. Our final model of how 



students how students reason with error bounds is framed in terms of Sfard's theoretical 

characterization of the condensation of processes into an entity. Sfard defines a process to be 

manipulation of familiar objects and an entity to be a condensed process.  Sfard classifies any process 

as an operational conception, which is understood to not involve static objects.  If an individual posses 

an entity view then one possess a structural conception, which involves a n individual thinking of an 

abstract object.  Condensation of a process into an entity is said to have occurred if one is able to 

simultaneously consider a collection of process without having to consider an individual action (Sfard, 

1992). Oehrtman, Swinyard, and Martin (in preparation) suggest that the condensation of the process of 

determining an N value based on an ε value may be a crucial step in constructing a universal 

quantification on ε in the definition. 

Methodology 
The research was conducted in three Calculus 2 classes with different instructors at two medium-

sized research universities midway through the spring semester. The three Calculus 2 classes and the 

Calculus 1 classes taken by nearly all of the students the previous fall were taught using activities 

developed with Oehrtman’s (2008) approximation framework. Since these activities were implemented 

in weekly in-class labs requiring students to collaborate in small groups, all of the students were 

familiar with this format. During the guided reinvention we engaged students in five class sessions 

working in groups of four or five to construct a definition of sequence convergence based on a 

collection of examples and non-examples the classes had previously generated.  Each group had a large 

whiteboard used for writing out definitions and communicating ideas.  One group in each class was 

selected to be video and audio recorded at all times, and a second video camera in each class captured 

the whole-class interactions. All documents created by the students were also collected.  

 

 

Figure 1. Iterative refinement in the process of guided reinvention of a formal definition. 

 

Throughout the reinvention students completed reflections on the examples and nonexamples, their 

emerging definition, and problems they identified with their definition. For the first reflection, which 

occurred prior to the guided reinvention, students were asked to create graphs of as many qualitatively 

distinct examples of sequences that converge to five and sequences that do not converge to five as 

possible. The researchers compiled representative samples of these graphs on a handout for students to 

reference throughout the guided reinvention. On the first day of the reinvention, all groups were given 

the prompt "A sequence converges to 5 provided that ...‖ The facilitators then guided students through 

the iterative process of writing a definition, evaluating their definition against the examples and non-

Write a definition 

Evaluate definition 
against examples 

& counterexamples 

Acknowledge and 
discuss conflict 

Discuss potential 
solutions 

 Generate examples 
and non-examples 



examples, identifying problems, and proposing solutions (Figure 1).  

There were 6-7 groups in each class and two undergraduate facilitators in addition to the instructor 

and one member of the researcher team supporting the groups. The facilitators' role included keeping 

students engaged in the iterative refinement cycle, asking clarifying questions, and introducing 

cognitive dissonance when students were not aware of critical problems with their definitions. 

After each class session the research team would meet to discuss interesting interactions that 

occurred in class and modify the protocol for subsequent days. Members of the research team would 

then watch the videos from each group before the next class meeting. This report focuses on our 

emerging hypotheses concerning how students conceived of and reasoned with the ε quantity in the 

formal definition and its interpretation in terms of an error bound as developed in the approximation 

framework. We evaluated these hypotheses against classroom events during each research team 

meeting and rewrote our hypotheses between each session. While reviewing the individual group 

video, we then developed predictions for how these ideas would develop during the next session. After 

the completion of the guided reinvention, we created content logs while again reviewing the video data, 

coding statements about the ε quantity in the students’ definition. We then refined our hypotheses until 

we felt we could adequately understand all of the students’ statements about ε and error bounds and 

could explain the challenges they encountered while reasoning about this quantity and the shifts that 

the made when reasoning with error bounds. 

Results 
 Our initial hypothesis about students’ reasoning about the   quantity can be summarized as 

follows: 

 Students will eventually frame their definition in terms of approximating the value of the limit L 

with terms of the sequence an and errors | an – L |. This formulation will still reflect students’ initial 

intuitive domain-first images of terms approaching the limit and thus will not incorporate aspects of 

an error bound. As students encounter problems with their definition applied to specific examples 

(such as a damped oscillation around L) and nonexamples (such as a sequence monotonically 

increasing to a value slightly smaller than L), they will recognize a need to say how close a 

sequence needs to get to its limit. In conjunction with their language and notation about 

approximations, this recognition will trigger a recall and application of ideas about error bounds. 

Students’ initial attempts will involve only a single value for ε, but as they recognize a need to rule 

out every possible nonexample, they will eventually construct a universal quantification for ε. 

Our initial analysis agreed with our initial hypothesis that students do tend to begin with a domain-first 

perspective, but had difficulty explaining the difficulties that students had with developing a universal 

quantification of error bounds.  Framing students’ reasoning with Sfard’s framework of condensation of 

processes into entities we were able to differentiate the ways that students think about error bounds.  

Once students begin to think of error bounds there appears to be two common trajectories that students 

can take. These two trajectories appear to be a reflection of the two types of questions in the 

approximation framework activities related to error bounds. One type of question asks students to 

calculate error bounds from information about the approximations. When referring to this type of 

conception of error bound we will use the notation E.B. When calculating error bounds in the activities 

a common strategy is to find an overestimate and an underestimate and use the difference between the 

two as an error bound. The other type of question gives students an error bound as a predetermined 

tolerance and then asks them to find a subset of the domain that produces approximations within that 

tolerance. As part of this question there is usually a follow-up question asking if it is possible to find a 

subset of the domain that produces approximations with error less than any tolerance one may want. 

When referring to such a tolerance conception of error bounds, we will use the notation ε.  

The two trajectories that students usually take involve students’ first thinking of error bounds as a 

process. One way that a student may possess a process view of error bounds is related to the type of 



question that ask students to calculate an error bound.  A process view of error bounds related to this 

question would result in student manipulating objects or information about these objects to construct an 

error bound or a sequence of error bounds. One of the ways that students constructed error bounds is by 

finding an overestimate and an underestimate and subtract them, as is typically expect in the 

approximation framework.  From these constructed error bounds students then usually will talk about 

the error bounds "getting smaller," "approaching zero," "decreasing," or other similar phrases. Students 

were not necessarily computing numerical values, but it appears that they are constructing error bounds 

from properties the approximations. For example in the first explicit discussion on error bounds of the 

participants said ―the error bound between these two points like this and two points like this is going to 

be so close to the same thing.‖  Here we can see that this individual is using the points to understand 

the error bound and that the error bound is derived from information about the points.  It appears that 

students may condense E.B.'s as an entity view of error bounds. To think of E.B.'s as an entity one must 

be able to construct a collection of error bounds simultaneously without having to consider any single 

action. Data seems to indicate that E.B. entity manifests themselves as "trend lines" of the error bounds 

that the approximations must lie within.  

Another process view of error bound is related to the second question where students are asked to 

find approximations within a given tolerance, ε. Here students consider a single error bound and then 

find a relationship of the n-value(s) and/or the approximation(s) to this error bound. For example on the 

second day one of the participant’s definition included ―that as n increases beyond ten thousand all of 

the values of a sub n gets so close to five that the error becomes less than this number here.‖  It should 

be noted that possessing this entity view of error bounds does not mean that an individual has a 

complete understanding of the formal definition of sequence convergence. For example one of the 

groups articulated that for any error bound they are able to find a single approximation with error less 

than any error.  

 

Conclusion 

Our data analysis identified two distinct trajectories for the development of students’ conceptions of 

error bounds (see Figure 2).  The students in our study first developed a process view of terms of the 

sequence approaching the limit, which was eventually framed in terms of approximations then 

augmented to include associated errors.  Some students then condensed their process into an entity 

view of the errors, enabling them to reason about an entire collection of approximations and their errors 

simultaneously.  At this point, the students typically described errors decreasing in holistic terms such 

as ―past some point n, 1 5 5n na a    ‖ or described the errors for an entire set of approximations to 

be small, such as ―past here, all of the errors are negligible.‖ .  Regardless of whether students 

developed an entity view of errors, all eventually began to think of one of the two conceptions of error 

bound characterized in our results.  The E.B. view does not easily lead to the universal quantification of 

ε which is needed to understand the formal definition of sequence convergence. In fact, all of the 

students we observed using an E.B. view eventually backtracked and explicitly started thinking in term 

so of the ε quantity as a tolerance before conceiving of a universal quantification.   



 
 

Figure 2.  Trajectory of error bound conceptions 

We hypothesize that develop an ability to fluidly move between E.B. and ε views of error bounds is 

crucial students learning to reason about formal limit definitions.   In subsequent work, we are 

analyzing the interactions of students various process and entity conceptions of the ε quantity in formal 

limit definitions with the other elements of the definition. 
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