
A Modern Look at the Cell Problem
Jennifer A. Czocher, The Ohio State University

A models & modeling theoretical perspective has been suggested to supersede both con-
structvism (Lesh, Doerr, Carmona, & Hjalmarson, 2003) and problem-solving paradigms
(Zawojewski, 2007). This is important to the RUME community because many of our foun-
dational works are rooted in theoretical and methodological perspectives derived from these
paradigms. In the case of problem solving and modeling, it is important to re-view the
problem-solving research settings with a mathematical modeling lens. Without this glance
backwards we cannot connect new ideas to old knowledge and we should not supplant a
theory without ensuring the next can account for existing observations. The objective of
this paper is to revisit a well-known problem setting to explore alternative interpretations
of students’ mathematical work.
The Task This report is part of a larger study to examine how students mathematically
structure nonmathematical settings. The task considered is one of 17 modeling tasks used
in the larger study which were designed to elicit the cognitive and mathematical activities
attendant to mathematical modeling. The Cell Problem was selected for closer inspection
because of its connection to and impact on the course of mathematics education in the US (see
Schoenfeld, 1982a): Estimate how many cells there are in the average adult human body. (How
much faith do you have in this figure? What about a lower estimate? An upper estimate?)
The problem fits the criteria of a Fermi problem, a type of estimation problem championed for
its ability to require the modeler to identify conditions, assumptions, relevant variables and
parameters, and to estimate values for those parameters (Sriraman & Lesh, 2006; Ärlebäck,
2009). The Cell Problem provides an ideal setting to re-examine interpretation of students’
problem-solving activity because the task lends itself to several readily realized mental models
(e.g., arising from weight and density, partitioning, percentages).
Previous Findings The Cell Problem is well-known for its use in RUME in the early 80’s
(Schoenfeld, 1982a). These students sought increasingly finer estimates of the volume of the
human body, and in other studies (e.g., Schoenfeld, 1982b, 1985) they carried on with such
“wild goose chases” without pausing to evaluate their productivity. Schoenfeld concluded
that students’ metacognitive control was failing. Schoenfeld (1982b) further argued that
even in methodologically “clean” laboratory settings, subjects’ responses may be influenced
by (i) a need to produce something due to the pressure o being recorded (ii) the expectation
that some methods are “more legitimate” for solving problems than others, and (iii) the
solver’s own beliefs about the nature of mathematics. These observations and suggestions all
point to why a student may have failed to produce certain expected mathematical behaviors
and they contribute substantially to our understanding of how mathematical thinking is
socially constituted in an interview setting. However, some aspects – such as the students’
interpretation of the problem’s context – are missing from the picture. From a models &
modeling perspective, this aspect is central to interpretation of the student’s behavior.

Research Questions The questions guiding analysis were: (i) How did the students make
sense of the problem context? (ii) How did the students examine their own productivity?
Mathematical Modeling Theory A model is a simplified representation of some system.
Modeling refers to both a sequence of behaviors and a way of thinking about a problem
(Kehle & Lester, 2003). These behaviors include a proclivity to describe, explain, or inter-
pret phenomena in mathematical terms (Lesh & Yoon, 2007). A mathematical model is the



ordered triple (S,M,R), where S is a situation in the real world, M is its mathematical
representation, and R is an invertible, idiosyncratic, cognitive link between the two (Blum
& Niss, 1991). The modeler’s success is a function of the information that hte modeler takes
into account, how he accesses and harnesses conceptual models, choices in symbolization,
and use of symbolic intuition (see Shternberg & Yerushalmy, 2003) to attribute meaning to
the model. Mathematical modeling is theorized as a cyclical, iterative process that connects
the Real World to the Mathematical World and can be seen in Figure 1. According to the
theory, a modeler’s activity can be resolved into stages (labeled by letters [a] - [f]) and tran-
sitions among those stages (labeled by numbers [1]-[6]). The stages and transitions are in
Figure 1, Tables 1 & 2.

Methods For the larger study, four engineering undergraduates enrolled in differential equa-
tions were selected among volunteers to participate in a series of seven one-on-one, task-
based cognitive interviews focused on mathematical modeling. Each interview session lasted
an hour to an hour-and-a-half, with the Cell Problem taking between 16 and 23 minutes
and demonstrating the full scope of the modeling cycle. The interview sessions were semi-
structured and I interacted with students to ask follow up questions, to clarify my under-
standing of their statements, or to challenge their assertions. I also encouraged the students
to use resources they felt might help them (e.g., textbooks, internet searches, calculators).
Video recordings of the sessions were reviewed and transcripts of the sessions were segmented
into statements containing a complete idea and these were tagged, via the method of con-
stant comparison, with externally observable indicators corresponding to cognitive activities
in the modeling cycle (activities [1]-[6]) (Borromeo-Ferri, 2007). The research questions were
operationalized in terms of Figure 1: understanding and simplifying/structuring activities
were associated with sense-making and validating with the students’ verification activities.
Instances of these activities were examined for technique of validation, the factors in S that
were selected to become represented in M , and an emergent theme centered on the students’
perceived importance of accuracy and precision.

Interview Results and Discussion The Cell Problem data is comprised of protocols from
four male engineering undergraduates: Orys, Trystane, Mance, and Torrhen. The students
spent extended periods of time in the simplifying/structuring and validating transitions, as
is typical of a Fermi-type problem. Findings are organized thematically.

Sense-making. In this task, all students selected measurable parameters (eg, average
human volume, size of the average cell) and all students were able to see multiple ways of
structuring the problem multiplicatively, either as a weight or volume model. In contrast to
Schoenfeld students, these students spent more time worrying about the impact of cell size
than human size. Trystane and Orys were both concerned over cell size a function of its type.
Since Orys found an estimate for one dimension of the average cell, he assumed the cells were
spherical and viewed the task as a packing problem. Trystane solved it as a partitioning
problem, breaking up the body in to different types of cells. Trystane iterated interpretations
of the problem as changes in parameter sets. Using google, he adjusted M to reflect the
parameters he had data for. In contrast, Mance’s activity revealed a negative relationship
among simplifying/structuring, mathematization, and validation: he created three situation
models (based on weight, surface area, and volume) but could not disentangle one relevant
variable set from the others during validation, leading to competing conceptual systems (see
Lesh & Yoon, 2007). In terms of Figure 1, Mance was unable to produce a multiplicative



mathematical representation M for any of the variable sets because the relationship density
× volume = weight persisted each time he tried to build R.

Validating The students primarily validated their models using empirical and experiential
comparisons to their real results (model predictions) and also dimensional analysis. Orys
and Torrhen commented that it was difficult to validate the results because the numbers were
so large “that they are just big and the meaning is lost in the physical sense even though
it still has meaning in the mathematical sense.” Other than comparing the prediction to an
empirical value or number sense, Trystane compared his mathematical model (a weighted
average) against a real model (a diagram of a human divided into cell types according to
organ or system). This kind of validating was not predicted by the modeling cycle.

Accuracy and Precision Torrhen was the only student who gave a “ballpark” estimate.
Mance dismissed results of such models as being inaccurate and so not worthwhile estimates.
Orys voiced his concern over his spherically-shaped cells and about averaging over cell types.
Trystane lamented that the average of so may kinds of cells was not useful. He concluded,
“I don’t know the context of the question. Why would someone ask this?...I can’t see why
having the number of cells in the entire body would be useful.” Thus, without an idea of
what the answer was going to be used for (eg, a measure of health), it was impossible for him
to determine error tolerance. Taken together these students’ responses highlight a few issues
in validating mathematical models: accuracy of the parameter estimates (and how errors
compound), the representativeness of average and whether it can be substituted for a set
of measurements, accuracy of the prediction based on these assumptions, and the precision
needed to answer the question (determined by the purpose for posing the question).

Mance’s case revealed that the struggle to articulate a mathematical model may be hin-
dered by multiple competing situation models. These participants did not behave patholog-
ically, but rather spent their time seeking information that had meaning according to their
situation and real models, and then adjusting their models in light of available information.
These students were wary of small variations in cell volume and its impact on cell count.
Schoenfeld’s students may have resorted to adjusting human parameters because they did
not have information available about cell sizes, because human dimensions are more familiar
to the human senses, or because humans can be replaced with sets of familiar shapes. The
students in this sample tended to rely on empirical and experiential methods of validation.

Mathematical modeling theory predicts that both identification of relevant variables and
relationships (simplifying/structuring) and validating activity critically affect model con-
struction. However, in the case of The Cell Problem, aspects of the sensibility of the task
were not considered, and these are important from a modeler’s perspective: Who would want
to know the answer? For what purpose? The students were left to guess answers to these
questions, and therefore were unable to interpret the problem as intended. Thus, in order
to observe this kind of mental activity in students’ mathematical work, we must provide
problem contexts that are commensurate with their means of carrying it out. This work is
ongoing, but it is sufficient to show that mathematical modeling perspectives can provide
for full and sensible reinterpretations of existing observations.
Questions for the Panel How can I explore the role of information requests and uses in
mathematical modeling? Is purpose of the modeling task as important to accuracy when
there is no numerical result? Are there other foundational works about which our under-
standing might benefit from re-visits with a mathematical modeling lens?
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Figure 1. Mathematical modeling cycle (Blum, 2011)

Table 1: Stages of Mathematical modeling

Stage Description
real situation problem, as it exists
situation model conceptual model of problem
real model idealized version of the problem (serves as basis for mathematization)
mathematical model model in mathematical terms
mathematical results results of mathematical problem
real result answer to real problem

Table 2: Cognitive Activities of Mathematical Modeling

Activity Trying to Capture
understanding forming an idea about what the problem is asking

for
simplifying/structuring identify critical components of the mathematical

model (ie, create an idealized view of the problem)
mathematizing represent the real model mathematically
working mathematically mathematical analysis
interpreting recontextualizing the mathematical result
validating verifying results against constraints


