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This research focuses on mental challenges that students face and how they resolve these 
challenges while transitioning from intuitive reasoning to constructing a more formal 
mathematical structure of Riemann sum while modeling “real life” contexts. A pair of Calculus I 
students who had just received instruction on definite integral defined using Riemann sums and 
illustrated as area under the curve participated in multiple interview sessions. They were given 
contextual problems related to Riemann sums but were not informed of this relationship. Our 
intent was to observe students’ transitioning from model of to model for reasoning while 
modeling these problem situations. Results indicate that students conceived of five major 
conceptions during their first task and their reasoning from the first task that became a model for 
reasoning about their next task. In this paper we detail those conceptions and their reasoning 
that became model for reasoning on the second task. 
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Introduction and Research Questions 
Riemann sums provide a foundation upon which one can understand why definite integrals 

model various situations. Previous research has detailed mental challenges that students face 
while reasoning about accumulation contexts, and has stressed how students could perform 
routine procedures for definite integral without being able to explain their reasoning (e.g., 
Artigue, 1991, Hall, 2010, Orton, 1983; Sealey, 2006). Research that has detailed how students 
might shift from more intuitive understanding to a more formal understanding has focused on 
roles of quantitative reasoning (Sealey, 2006; Thompson, 1994) and how that reasoning can 
support a more conceptually accessible formation of the Fundamental Theorem of Calculus 
(Thompson & Silverman, 2008). Other research has detailed the importance of conceiving of 
appropriate structural elements of the Riemann sum within context in order to complete 
approximation tasks (Sealey & Oehrtman, 2008). But when students come to understand 
Riemann sums as a model of a particular situation, how does their reasoning about that model 
influence their reasoning in constructing Riemann sum models of subsequent situations? This 
research attempts to answer the following questions. (1) What challenges do students face and 
how do they resolve those challenges as they constitute Riemann sum as a model of a contextual 
approximation problem? (2) How do students utilize their prior reasoning from their constitution 
of their Riemann sum model as a model for their reasoning about subsequent problems? 

 
Theoretical Perspective and Methods 

Rooted on the theory of Realistic Mathematics Education (Freudenthal, 1973), emergent 
modeling is an instructional design heuristic where modeling is viewed as an active organizing 
process where models co-evolve as students reorganize their intuitive reasoning and construct 
more formal mathematical reasoning (Gravemeijer 2002; Heuvel-Panhuizen, 2003). Models are 
viewed as more than representations but as holistic organizing activities including a solution 
strategy. Model of is the starting phase of emergent modeling where learners consider a model to 



 

be context-specific and employ informal solution strategies. Model for is the latter phase of 
emergent modeling where learners shift from thinking about the problem situation of the model 
to reasoning about it mathematically. “The model changes character, it becomes an entity of its 
own, and as such it can function as a model for more formal mathematical reasoning” (emphasis 
in original, Gravemeijer, 2002, p.2). Quantitative reasoning provides a means of modeling where 
students conceive of quantities, construct relationships between quantities, and meaningfully 
operate on those quantities that can support the construction of further quantities as one reasons 
with and about the problem situation (Larson, 2010; Thompson, 2011). When a conceived 
quantity is specifically attached to an attribute of a problem situation, any representing of this 
quantity would indicate model of reasoning, but as one reasons about this quantity within a 
quantitative structure without referring to a problem situation, that reasoning emerges as a model 
for their reasoning about the mathematics. 
     Ten interview sessions (50-148 minutes) were conducted with two volunteer Calculus I 
students, Sam and Chris (pseudonyms), who had been introduced to the definite integral through 
Riemann sums illustrated as area (Stewart, 2008). Students were given three approximation tasks 
related to Riemann sums, out of which two emphasized finding under and overestimates to total 
distance traveled based off of a table containing velocities and a velocity function, respectively 
(Figure 1). The third task was related to pressure on a dam, but this paper will focus only on the 
first two tasks since analysis of the third task is ongoing. For these two tasks, additional subtasks 
included drawing pictures of the actual situation, finding and illustrating error bounds, and 
graphing. Sessions were videotaped to analyze how students modeled their problem situations. 
Models were identified based on students’ reasoning as exemplified by their representations and 
verbal utterances. When students directly related their reasoning to the problem situation, this 
was viewed as model of reasoning. Prior patterns of reasoning and representing when applied to 
a current problem situation were viewed as indicators of potential model for reasoning.  
 

Task 1: The table below shows the velocity of a car travelling from Conway to Little Rock. In this activity you will 
approximate the distance travelled by the car during the first 10 seconds of the car entering the southbound I-40 
ramp. 
 T(s) 0 2 4 6 8 10 

V(ft/s) 0 21 34 44 51 56 

Task 2: NASA’s Q36 Robotic Lunar Rover can travel up to 3 hours on a single charge and has a range of 1.6 miles. 
After t hours of traveling, its speed in miles per hour is given by the function ! ! = !"# 9 − !!. In this activity you 
will approximate the distance travelled by the Lunar Rover in the first two hours. 

Figure 1. First two teaching experiment tasks. 
 

Results 
The results reported here will focus on student’s emerging model of Task 1 (Table 1) and 

reasoning about Task 1 that reappeared in Task 2 to suggest model for reasoning. 
Initially, Sam and Chris realized that the varying velocities and the finite amount of data 

caused problems with easily completing Task 1. Reasoning from the provided table, their first 
conception of a distance/rate/time relationship (DRT 11) was modeled as a picture containing 
snapshots of a car equally distanced between every two seconds (Figure 1, Picture a). After the  
                                                
1 Descriptions for DRT 1, DRT 2, DRT 3, Total 1, and Total 2 can be found in Table 1. 



 

Table 1. 
Distinct Conceptions During Task 1. 

Conception Description of reasoning 

DRT 1: Distance changes as 
time changes 

Omitted explicit detail to amounts of change in velocity. Pictorially represented as a 
vehicle with constant amounts of changes in distance per two second intervals. 

DRT 2: Distance is change in 
velocity × change in time 

Initially supported by their reasoning about amounts of change in distance vary 
because of changing velocities. Pictorially represented as a vehicle with decreasing 
amounts of changes in distance per two second intervals which became a model for 
distance as d = ∆V·∆t. 

DRT 3: Distance is constant 
velocity × change in time 

Initially only conceived for a vehicle traveling at constant velocities. After adjusting 
their picture to model a vehicle with increasing amounts of changes in distance and 
after “supposing” their vehicle as traveling at constant velocities was this 
conception applied to their context. Formulaically represented as ! = !!∆!. 

Total 1: Total distance 
approximated by adding up 
distances are underestimates 
or inconclusive. 

Adding up amounts of change in distances approximates total distance. Coordinated 
with DRT 2 and then DRT 3. With DRT 3 it was initially represented as !!∆!!

!!! . 
For Sam, this sum was an underestimate because the sum would increase towards 
the exact total distance traveled as more data points were added. For Chris, this sum 
was inconclusive because the data table did not reveal what happened between data 
points.  

Total 2: Total distance 
approximated by adding up 
using max. and min. 
velocities. 

Coordinated with DRT 3. They conceived of maximum and minimum velocities 
over a time-interval as approximations to varying velocity over that interval. 
Underestimates and overestimates were represented by !!∆!!

!!!  and !!∆!!
!!! , 

respectively. 
Note. DRT = Distance, Rate, and Time relationship.  
 

Figure 2. Two pictures showing locations of the car every two seconds. 
  
facilitator prompted them to be “picky” with their picture, they attended to varying amounts of 
change in distance between snapshots, and represented this conception pictorially with increasing 
changes in distance between every 2-second snapshot (Figure 1, Picture b) and formulaically as  
“d = ∆V·∆t” (DRT 2). After prompted to think about a “real life” situation of a car merging onto 
an interstate, they adjusted their picture to indicate increasing distances between snapshots. By 

Picture a Picture b 



 

this moment they had indicated that adding up individual distances would provide 
approximations for total distance (Total 1). At first, DRT 3 appeared in response to an additional 
facilitator question concerning another situation in which a car traveled at 70 mph for two hours 
and 80 mph for one more hour. Though they concluded that the car in the other situation traveled 
220 miles, DRT 2 persisted in their reasoning about the car with varying velocities in Task 1. 
Once they realized that their formula d = ∆V·∆t for the other situation yielded a conflicting 
answer when applied to the additional question did they rethink DRT 2. Attempting to calculate 
error bound, they grappled with finding both under and overestimates for total distance. After 
three hours since starting this task, once they had conceived of the roles of maximum and 
minimum velocities as approximations for varying velocities over 2-second intervals, they 
coordinated DRT 3 with total distance and were able to find both under and overestimates for 
total distance (Total 2). Later Sam compared getting an exact distance to a perfect video, “We 
have an infinite number of snapshots, […] a solid image of what- We have a video, a perfect 
video where there is no frames or anything like that, an ideal video.” They finished with 
representations seen in Figure 3. 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Immediately after being given Task 2, Sam asked Chris, “Don’t you think the picture looks 

the same like last time?” He then drew a picture with snapshots of the rover at every half hour 
interval. To understand the changing velocity of the rover, they constructed a table of values 
similar to the given table in Task 1. Once their table was constructed, they explicitly quantified 
amounts of change and coordinated that with labels added to their picture. After being asked, 
“Where is distance?” they noted distances between snapshots on their picture and proclaimed 
that finding total distance was, “the same as what we did last time.” Subsequently, they 
represented total distance as !(!)∆!. Although imprecise, this representation captures the 
multiplicative structure between particular velocities and amounts of change in time within a 
summation. In the process of constructing a numerical approximation to total distance travelled, 
they employed their prior reasoning concerning maximum and minimum velocity over an 
interval and coordinated their DRT 3 and Total 2 to calculate under and overestimates, 
eventually represented as summations with appropriate adjustments to the starting values of the 
index. From approximations to exact distance, Sam stated, “We go from having pictures, to a flip 
book, to a video, to like one true continuous string where there is no frame rate.” Chris 
generalizes, “all of these summarize how you can make an error smaller by increasing the 

Figure 3. Chris and Sam's multiple representations of Task 1 



 

number of snapshots...as we increase the number of snapshots we tending to get the exact 
displacement so, that’s what both of them summarize [pointing to both Task 1 and 2].”  

 
Discussion and Questions 

We observe that the challenges presented by Task 1 were not easily overcome by Sam and 
Chris but their engagement of these challenges supported them in forming patterns of reasoning 
for more effectively modeling Task 2. For instance, Sam and Chris had to construct appropriate 
ways for reasoning about a relationship between distance, rate, and time for a car of increasing 
velocity. They had to conceive of pertinent roles for minimum and maximum velocities for under 
and overestimates, and relate those to a notion of summing up distances to obtain Riemann sums 
for under and overestimates. For instance, Sam and Chris’ conceptions of minimum and 
maximum velocities within a model of calculating under and overestimates for total distance 
during Task 1 was first represented after three hours of work. In contrast, they readily 
represented these estimates for total distance for Task 2 within thirty-two minutes. How were 
they able to progress so rapidly during Task 2? Their picture, graph, table, and formulaic 
expressions from Task 1 served as reference points for them to make connections between their 
two tasks as they conceived of, represented, and related relevant quantities. For example, before 
they firmly committed to using their reasoning from Task 1 applied to Task 2, their pictures and 
tables supported their conceiving of varying velocities, amounts of change in time, amounts of 
change in distance, and in relating these quantities while building connections across the tasks. 
As these connections became more apparent, the students progressed in constructing appropriate 
Riemann sum approximations. We note that it was not merely the end results of Task 1, but 
elements of their reasoning that went behind creating those end results, including a solution 
strategy, which served as a model for their subsequent reasoning during Task 2. 

We acknowledge that our work with one pair of students does not necessarily generalize to 
others. Furthermore, the model for reasoning being reported may be more general reasoning that 
is still tied to Riemann sum approximation problems involving relationships between distance, 
rate, and time. We also note that since the students were exposed to Riemann sums, they were 
not reinventing Riemann sum symbolizations but were conceiving of a multiplicative structure 
within contexts and constructing relationships between this structure and some existing Riemann 
sum structure. Our questions are: How can we design tasks to better capture students’ modeling 
activities and their transition from model of to model for in the context of definite integral and 
Riemann sum within a research context? For students who have not been exposed to Riemann 
sums, how can we modify our tasks to generate an intellectual need for these sums and 
subsequently support these students in constructing a Riemann sum? How might activities be 
effectively scaffolded to support the model of / model for transition in a classroom?  
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