
DEVELOPING HYPOTHETICAL LEARNING TRAJECTORIES FOR TEACHERS’ 
DEVELOPING KNOWLEDGE OF THE TEST STATISTIC IN HYPOTHESIS TESTING 

	
  
Jason Dolor 

Portland State University 
	
  

In the past decade, educators and statisticians have made new suggestions for teaching 
undergraduate statistics. In light of these new recommendations it is important to 
(re)evaluate how individuals come to understand statistical concepts and how such research 
should impact curricular efforts. One concept that plays a major role in introductory 
statistics is hypothesis testing and the computation of the test statistic to draw conclusions in 
a hypothesis test. This proposal presents a theoretical approach through the development of 
a hypothetical learning trajectory of hypothesis testing by utilizing sampling distributions as 
the building block to understand statistical inference. In addition, this proposal presents how 
this hypothetical learning trajectory may support the development of research-based 
curricula that foster an understanding of the test statistic and its role in hypothesis testing. 
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1. Introduction 
Hypothesis testing has been used as a research tool in the fields of science, business, 

psychology, and education, among others. Because of the widespread use of hypothesis testing in 
research, it is no surprise that it has found its place in introductory statistics curriculum. The 
Guidelines for Assessment and Instruction in Statistics Education (GAISE) report for collegiate 
curriculum was released outlining changes needed in introductory statistics courses (Aliaga et al, 
2010). The report pushed for changes to instruction that fostered an understanding of statistics, 
including improving the education of hypothesis testing. If the goal of educators is to improve 
students understanding of hypothesis testing, then teacher’s must help students view hypothesis 
testing as more than a procedure. Teachers must also have a robust understanding of the concepts 
of hypothesis testing because their knowledge has a direct impact on student learning. Robust 
knowledge of hypothesis testing includes understanding concepts like the level of significance, 
the p-value, the test statistic, and the sampling distribution.  

In traditional hypothesis testing, the computation of the sample test statistic plays a crucial 
role. Surprisingly, introductory textbooks provide vague definitions of the test statistic. For 
example, Bluman (2012) defines the test statistic as “the numerical value obtained from a 
statistical test, computed from (observed value – expected value) / standard error” (p. 812). 
Levine and Stephan (2005) define the test statistic as “the statistic used to determine whether to 
reject the null hypothesis” (p. 274). These definitions do very little in outlining the importance of 
the test statistic or its relationship to other statistical concepts. In hypothesis testing, the test 
statistic is compared to a critical value or used to find the p-value to generate an inference. The 
test statistic is also crucial because the theoretical sampling distribution in traditional hypothesis 
testing is a result of a collection of many sample test statistics. If the goal of teachers is to foster 
student understanding of hypothesis testing then it is important that teachers understand the role 
of the test statistic and how test statistic formulas are generated. Thus, the goal of this research 



paper is to answer the following question: “What would a hypothetical learning trajectory look 
like for developing teacher understanding of test statistic formulas in hypothesis testing?” 

To answer this question, the proposal begins with a review of the literature on hypothesis 
testing. Focusing on trends in the research and what factors are needed to improve the training of 
teachers. Then a hypothetical learning trajectory (HLT) designed to support in-service and pre-
service teachers’ (IPST) learning of the role of a test statistic in hypothesis testing is proposed. 
Finally, the proposal ends with a discussion about the benefits and plans for future research in 
statistics education. 

2. Literature Review 
A review of the literature uncovered extensive research related to concepts of hypothesis 

testing (Batanero, 2000; Castro Sotos et al, 2007; Falk, 1986; Haller & Krauss, 2002; Thompson, 
Liu, and Saldahna, 2007; Vallecillos, 2002; Vallecillos & Batanero, 1997). Vallecillos and 
Batanero (1997) revealed that students have difficulties identifying the null and alternative 
hypotheses. Researchers have also found that students and teachers struggle with interpreting the 
level of significance and p-value (e.g. Batanero, 2000; Castro Sotos et al, 2007; Garfield & Ben-
Zvi, 2008; Haller & Krauss, 2002; Falk, 1986; Liu, 2005; Liu & Thompson, 2005; Vallecillos, 
2002; Vallecillos & Batanero, 1997) and fail to understand the role of a sampling distribution in 
hypothesis testing (e.g. Thompson, Liu, & Saldahna, 2007).  

Research conducted by Thompson, Liu, and Saldahna (2007) discovered that teachers have 
difficulty in seeing the role of sampling distributions in hypothesis testing and understanding the 
logic of hypothesis testing. They conducted a professional development seminar with eight 
teachers who had extensive coursework in statistics. The results of the research revealed “some 
of the teachers’ conceptions of probability were not grounded in the concept of distribution 
which hindered their thinking about distributions of sample statistics and the probability that a 
given statistic is within a given range of the center of the distribution” (p. 228). The fact that the 
relationship between distribution and probability is problematic for teachers is troubling because 
these ideas lie at the heart of statistical inference. Thompson et al. argued that instruction for 
teachers should focus on developing their understanding of sampling distributions. In the same 
study, Thompson et al. also investigated the teachers’ understanding of unusualness of samples 
in the context of statistical inference through sampling distributions. A sample statistic would be 
considered rare or unusual if it fell in a region of the sampling distribution that had small 
occurrences of other sample statistics. The importance of the sampling distributions in 
hypothesis testing (and statistical inference in general) is a view shared by many statistics 
education researchers (e.g. Garfield & Ben-Zvi, 2008; Lipson, 2003; Rubin et al, 1990; Saldanha 
& Thompson 2002; Thompson, 2004; Watson & Moritz, 2000). 

There has been extensive research covering concepts of level of significance, p-value, 
sampling distributions and null hypothesis, but an exhaustive search of the literature revealed no 
research investigating teachers’ or students’ understanding of the test statistic. This lack of 
research testing is quite troubling because of the prominent role test statistics play in introductory 
statistics textbooks’ treatments of hypothesis testing. However, research pertaining to the 
concepts of unusualness and sampling distributions could play a key role in generating methods 
for developing IPSTs’ understanding of test statistics.  

3. Theoretical Perspective 
Many researchers recommend that sampling distributions be central in the teaching of 

statistical inference (Garfield & Ben-Zvi, 2008; Lipson, 2003; Rubin et al, 1990; Saldanha & 



Thompson 2002; Thompson, 2004; Thompson, Liu, and Saldahna 2007; Watson & Moritz, 
2000). For example, Thompson et al. (2007) state “we suspect that teachers who value 
distributional reasoning in probability and who imagine a statistic as having a distribution of 
values will be better positioned to help students reason probabilistically about statistical claims” 
(p. 229). Thus, if one uses suggestions by researchers to simply use a sampling distribution of 
sample proportions (or means), then making a statistical inference must rely on utilizing the 
sampling distribution in a hypothesis test. To illustrate this, consider the following problem: 

Suppose a researcher wanted to determine whether a college population has more males 
than females. He surveys a group of people and finds that 70% of them are male. Is this 
sufficient evidence to claim there are more males than females? 
To perform a hypothesis test we begin by first assuming the population is equally 

proportioned between male and female. This identifies the null hypothesis as population 
proportion of males being 50% (i.e. H0: p = 0.50) with an alternative hypothesis being that there 
are more males in the population (i.e. H1: p > 0.50). This produces a hypothetical population 
distribution of 50% males. Using a computer simulation, one could generate multiple samples 
from the assumed population of 50% males. A sampling distribution of proportions could then be 
produced from the simulated samples. An individual could determine the unusualness of the 
observed sample proportion (i.e. 𝑝 = 0.70) by locating its position in the sampling distribution 
(Figure 1). If the observed sample fell in a region of the sampling distribution where other 
hypothetical null sample proportions are unlikely to fall, then the observed sample is considered 
to be unusual. A person can then claim with statistical significance that 50% is not likely to be 
the true population proportion of males in the college population. 

 
Figure 1. Hypothesis testing approach utilizing a sampling distribution. 

This approach places the sampling distribution at the center of the hypothesis testing 
argument. Furthermore, the null hypothesis is prominent in this approach because it requires 
IPSTs to generate samples from an assumed null population. Finally, it allows IPSTs to realize 
that a sample’s unusualness is a result of a frequentist approach to probability. That is, the 
probability of a sample proportion occurring is a result of a long-term stochastic process of 
sampling many times from the null population. The approach described above has many benefits, 
but problems may arise when dealing with complex situations.  

Teaching hypothesis testing utilizing the above approach is valid if we study a single 
proportion. If the problem were to include multiple proportions, then one could speculate that the 



approach of hypothesis testing described above should easily transition to multiple proportions. 
Let us consider the following hypothesis test problem. 

Suppose a researcher wanted to determine whether there was a difference between the 
proportion of freshmen, sophomore, juniors, and seniors in a college population. He surveys 
a sample of students from the college and the sample contains 40% freshmen, 30% 
sophomore, 20% juniors, and 10% seniors. Is this sufficient evidence to claim distribution of 
freshmen, sophomore, juniors, and seniors are not equal? 
In this example, we begin with the assumption that freshmen, sophomores, juniors, and 

seniors are equally distributed (i.e. 25% freshman, 25% sophomores, 25% juniors and 25% 
seniors). Following similar logic as above, this would generate an assumed population that is 
equally distributed between the different categories. Once again, an individual could use 
computerized simulations to produce an empirical sampling distribution based on many samples 
from the assumed population. This begs the question, “How do we create a sampling distribution 
to represent the null assumption and determine the rarity of an observed sample?” One option is 
to generate multiple sampling distributions for each category. That is, generate a sampling 
distribution for the percentage of freshmen, sophomores, juniors, and seniors with 0.25 as the 
population proportion (center) for each distribution. A second option is to use the chi-squared 
test statistic formula (i.e. 𝜒! =    !"#$%&$'!!"#$%&$' !

!"#$%&$'  
  ) to generate a single sampling distribution 

(Figure 2).  

 
Figure 2. Two approaches of hypothesis testing for multiple proportions. 

Option 1, or the multiple sampling distribution approach (MSDA) may be a logical choice 
for someone who has already used sampling distributions as outlined in the first example (Figure 
1) as a means for studying hypothesis testing. One could determine the likelihood of an observed 
sample by considering where the observed proportion from each category fell with respect to that 



category’s empirical sampling distribution. For instance, seeing where 40% freshmen fell in the 
sampling distribution of freshmen based on the 25% null assumption. This approach might seem 
intuitive at first, but an investigation of this approach uncovers significant problems. One such 
problem arises when considering the following question: What if two of the categories were 
considered unusual, but two were not? For example, sophomores and juniors are not unusual in 
their respective sampling distribution because 30% and 20% are not unusually far from the 
center of 25%, but freshmen (40%) and seniors (10%) are far from the center of their respective 
distributions. This would mean developing additional criteria to determine a sample’s 
unusualness. This problem increases in difficulty as additional categories are added. A second 
problem with this approach is that by generating multiple sampling distributions, the probability 
of generating an incorrect inference increases. Comparing an observed sample with multiple 
proportions across multiple sampling distributions compounds Type-I errors. If it is decided that 
unusual is a sample that has a 5% chance of occurring for each category, then this approach is 
not really comparing unusual at the level of 5%.  

Option 2, or the single sampling distribution approach (SSDA), as the name implies, uses a 
single sampling distribution to discuss unusualness. The chi-squared test statistic formula 
generates a sampling distribution of sample chi-squared test statistics. Unusualness of a sample 
could once again be determined by locating where the observed sample’s chi-squared test 
statistic falls within the null sampling distribution. SSDA is the approach we want IPSTs to 
know when multiple categories are being investigated. SSDA is directly related to the traditional 
approach found in statistical textbooks, which is formally called the chi-squared goodness-of-fit 
test. Another example of a SSDA is IPSTs might generate a test statistic formula where they sum 
the absolute deviations (i.e. |𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑|) to construct a sampling distribution. Thus, 
there are student-generated approaches (SGA) within SSDA and MSDA to testing multiple 
proportions. Currently we can only speculate what SGA of hypothesis testing might be, but it 
would be beneficial to analyze how SGA can be used to leverage IPSTs towards traditional 
hypothesis tests. 

The examples above provide motivation towards developing a hypothetical learning 
trajectory (HLT) from which to study teachers’ development of test statistics for more 
complicated hypothesis tests. I conjecture that an approach to understanding a test statistic must 
encompass a relationship between the observed sample information, unusualness, null 
hypothesis, and sampling distribution. If the new approach towards hypothesis testing is to base 
decisions on the sampling distributions, it is important for teachers to also understand the 
meaning of the points used to generate the sampling distribution. These points are the direct 
results of the test statistic formula being applied to samples. Therefore, the test statistic formula 
provides a numerical summarization of sample information. The motivation for developing a test 
statistic that generates a single numerical value is to generate a single sampling distribution 
rather than multiple sampling distributions. Furthermore, the sampling distribution we wish to 
generate must express the unusualness of samples in light of the null hypothesis. In other words, 
developing a test statistic formula should be viewed as a way to quantify unusualness of an 
observed sample under the null assumption. Viewing the test statistic formula through this 
perspective could be useful in generating tasks where IPSTs reinvent the test statistic formula. 
One such approach to teaching where IPSTs reinvent mathematical concepts is through guided 
reinvention (Gravemeijer, 2004). 

Guided reinvention is part of the theoretical framework of realistic mathematical education 
(RME). The basis of RME is that mathematics should be learned naturally through discovery and 



discussion, as students are involved in solving mathematical problems realistic to his/her 
perspective. In short, mathematical knowledge is developed by an individual through 
experiences. Rather than a traditional lecture, students learn through instructional tasks and 
discussion. Students’ shared ideas play a central role of the learning while the teacher serves as a 
mediator to ensure discussions are directed toward a learning goal. The goal is outlined through a 
hypothetical learning trajectory (HLT). “The notion of a hypothetical learning trajectory entails 
that the teacher has to envision how the thinking and learning, in which the students might 
engage as they participate in certain instructional activities, relate to the chosen learning goal” 
(Gravemeijer, 2004, p. 8). The HLT consists of three components: (1) establishing learning 
goals, (2) envisioning students mental process, (3) instructional design (Gravemeijer, 2004). 

In order to generate activities with the goal of building understanding of the test statistic, a 
careful description of the HLT is needed. Prior to working with tasks on developing a test 
statistic formula for multiple proportions, IPSTs should already have an understanding of 
hypothesis testing using single proportions (i.e. Table 1). This way, when IPSTs are presented 
the task of multiple proportions they are already motivated to generate a sampling distribution(s) 
to make decisions about the null assumption. The goal of the HLT for test statistic activities is to 
move IPSTs towards SSDA above, where they begin to understand the role of the test statistic as 
a numerical quantification of unusualness leading towards the development of a single sampling 
distribution.  

When generating a task around the goodness-of-fit test to develop a test statistic formula, one 
approach is to have IPSTs compare unusualness of samples against other samples in light of an 
assumption. One such task could be the ranking task below (Figure 3). The goal of the task is for 
IPSTs to generate a method to numerically measure unusualness of a sample in light of the null 
assumption.  

 
Figure 3. Ranking task to developing a test statistic formula for multiple proportions 

I conjecture that IPSTs would intuitively see how an observed sample differs from the 
expectation for each category. The goal of the task is to lead IPSTs towards developing a chi-
squared test statistic formula in order to apply a SSDA for a hypothesis test problem. Ideally, we 
would want IPSTs to generate the chi-squared test statistic. It is possible that IPSTs will not 
generate this test statistic at first. For instance, IPSTs might develop a formula where they sum 
the absolute deviations. In this case, moving towards the chi-squared test statistic would require 
additional tasks and discussions. This task also helps IPSTs connect the relationship of the null 
assumption with the test statistic formula and build an understanding that unusualness is based 
on comparing samples. Following this task, IPSTs can attempt a hypothesis test utilizing their 



constructed test statistic formula to generate a sampling distribution. Discussion regarding 
properties of the test statistic formula and its role in the hypothesis testing procedure can follow. 

4. Discussions 
A review of the literature has uncovered a lack of research on student or teacher 

understanding of the test statistic. This paper presents a methodology for developing tasks that 
would foster an understanding of the test statistic formula. By utilizing the suggestions of 
researchers, the methodology offered here supports the importance of sampling distributions as a 
major part of instruction on hypothesis testing by extending sampling distributions to encompass 
complex samples. I also offer a perspective of the test statistic formula by viewing it as a tool to 
quantify the unusualness of a sample in light of the null hypothesis. Further, I present a possible 
HLT that could be utilized in order to build understanding of a test statistic for a goodness-of-fit 
test. Plans for future research will focus on actual implementation of a teaching experiment using 
the prescribed HLT. During the teaching experiment, it would be worthwhile to also examine 
other approaches that might differ from the MSDA and SSDA described above. Finally, this 
research focuses on samples with multiple proportions but it would be worthwhile to consider 
tasks where IPSTs develop test statistics formula for the various hypothesis tests. The goal of this 
paper was to produce a methodology towards understanding the test statistic formula. In the 
process, I have also uncovered a new view of hypothesis testing that could be useful for the 
future of statistic education research. 
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