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This paper examines mathematics majors' evaluations of indirect proofs and of the compound 
statements used in this form of proof. Responses to survey items with a cohort of 23 students and 
six 1-hour clinical interviews, indicate that the students who could successfully evaluate indirect 
arguments and who could successfully recognize logically equivalent statements, tended to use 
partially unpacked (Selden & Selden, 1995) versions of the statements and the proofs and, in so 
doing, demonstrated a productive use of the symbolic proof scheme, whereas both successful and 
unsuccessful students tended to use a proof framework (Selden & Selden, 1995) for indirect 
proofs. Moreover, successful students' approaches are suggestive of activities, which are rarely 
found in introductory proof texts, yet may benefit novice proof writers. 
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Introduction 

Research on students’ production, understanding, and evaluation of indirect proofs 
suggests a general lack of preference for this form of proof. Harel and Sowder (1998) reported 
that students in their teaching experiments disliked indirect proofs and argued that this is due to 
students’ preference for constructive proofs – proofs that construct mathematical objects and 
relations – over proofs that solely establish the logical necessity of a mathematical relation or 
object, as is the case with indirect proofs. Prior to Harel and Sowder’s work, Leron (1985) also 
proposed that students’ difficulties deriving a sense of conviction from indirect proofs may be 
rooted in the non-constructive nature of such proofs. Specifically, he argued that “most non-
trivial proofs pivot around an act of construction – a construction of a new mathematical object,” 
whereas with indirect proofs, we engage in acts of mathematical “destruction, not construction” 
(p. 323). Additionally, Harel and Sowder (2007), in their discussion of Aristotilian causality, 
have explored how students’ tendency to view implications as causal statements can act as 
barrier to students’ acceptance of indirect proofs. Indeed, if P → Q means P causes Q then how 
can ~Q → ~P show P causes Q?  

Antonini and Mariotti (2008) explored students’ proof preferences related to indirect 
proof and provided a rationale for these difficulties that is not solely rooted in issues of 
constructiveness (Leron, 1985; Harel & Sowder, 1998) and causality (Harel & Sowder, 2007). 
Working within the Cognitive Unity theoretical framework, Antonini and Mariotti showed that 
indirect proofs call on students to move from a principal statement (e.g., P → Q) to a secondary 
statement (e.g., in a proof by contraposition, ~Q → ~P) and to interpret or produce the proof of 
the secondary statement. They argue that it is this jump between principal statements (S) and 
secondary statements (S*) that is the source of students’ difficulties and refer to such difficulties 
as metatheoretical. “Referring to their meta-theoretical status, we call the statement S*→S meta-
statement, the proof of S*→S meta-proof, and the logical theory, in which the meta-proof makes 
sense, meta-theory” (p. 405). To illustrate students’ metatheoretical difficulties, Antonini and 
Mariotti asked students to evaluate indirect proofs, including a proof by contraposition of the 
statement, “If n2 is even then n is even.” They showed that students struggle to accept the 



validity of the principal statement (i.e., If n2 is even then n is even), given the proof of the 
secondary statement (i.e., If n is odd, then n2 is odd). For instance, Fabio, a university student 
remarked, “The problem is that in this way we proved that n is odd implies n2 is odd, and I 
accept this; but I do not feel satisfied with the other one.” (p. 407). We see here that Fabio has 
accepted that a claim has been made and a proof given of the secondary statement, but is not 
“satisfied” with regard to the principal statement. Thus, it is the “jump,” S*→S, which he finds 
problematic. Interestingly, if one considers the ideas proposed by Leron (1985), and Harel and 
Sowder (1998, 2007), then a plausible rationale for the meta-theoretical difficulties discussed by 
Antonini and Mariotti (2008) emerges. Indeed, it may be that students look to such arguments to 
understand how S* causes S (i.e., they seek causality in the argument) or how negating a claim 
of nonexistence (assuming a negation) enables one to know, in an epistemological sense, 
existence, that is, S* means S.  
Reframing the Problem 

According to Antonini and Mariotti, the Italian university students in their case studies 
recognized the transition to secondary statements (S*) and the proof of S* but experienced 
metatheoretical difficulties related to the “jump” between statements (i.e., S*→S). It is unclear, 
however, if the majority of students would be as successful at recognizing and understanding this 
jump. Certainly, if one does not recognize and understand the jump between a principal and 
secondary statement, then one cannot accurately evaluate the logical structure of an indirect 
proof. Moreover, it may be the case that students’ difficulties accepting the jump do not arise 
until and unless they are able to recognize a jump. 

Drawing on series of clinical interview, Brown (2012) explored the extent to which advanced 
mathematics students (students enrolled in their 3rd and 4th university year, n = 6) were able to 
explain the logical structure of four indirect proofs involving basic number theory statements. 
Findings from this study indicated that only two of the advanced students could successfully 
explain the indirect proofs that were proofs by contradiction, while all but one student could 
successfully explain the indirect proofs that were proofs by contraposition. Additionally, the 
students who were successful at explaining the proofs by contradiction were also able to 
successfully evaluate a series of theorem statements, in terms of their logical equivalence, 
whereas the other four students struggled to do so. Specifically, among the other four students, 
after several unsuccessful attempts and repeatedly expressing doubts regarding the validity of 
their own evaluations of the argument, two were eventually able to explain the logical structure 
of the proofs by contradiction. The other two of the four students were not able to successfully 
explain the arguments even after repeated attempts and both misinterpreted key aspects of the 
logical structure of the arguments, including but not limited to the logical form of the secondary 
statement. Findings from these clinical interviews point to the possibility that many students’ 
difficulties may be at the level of recognizing and understanding the jump between statements 
(S*→S). Moreover, they also suggest that the various forms of indirect proof (proof by 
contradiction, proof by contraposition) are not uniformly difficult for students.  

As illustrated thus far, much of the research on indirect proof has focused on either students’ 
lack of preference for or their difficulties with indirect proof (Leron, 1985, Harel & Sowder, 
1998, Antonini & Mariotti, 2008). While understanding the nature of students’ difficulties and 
the junctures at which these difficulties may manifest themselves is important, it is also possible 
that progress may be made by studying students who can (1) successfully interpret and evaluate 
indirect proofs, and (2) determine the logical equivalence of principal and secondary statements.  
The purpose of this paper is to share findings related to students’ successful approaches related 



to interpreting indirect proofs. In particular, building on Selden and Selden’s (1995) description 
of unpacking and their construct of a proof framework and Harel and Sowder’s (1998) construct 
of a symbolic proof scheme, we will demonstrate that the students’ successful attempts represent 
instances of students’ use of a partial unpacking of the theorems and are examples of students’ 
productive use of the symbolic proof scheme, while use of a proof framework for indirect proof 
was a characteristic of both successful and unsuccessful attempts. Interpreted in terms of the 
work of Antonini and Mariotti (2008), these findings shed light on the approaches used by 
students who can successfully engage in metatheoretical modes of thought. 
The Study 

 The data presented in the paper are drawn from the Bridges to Advanced Mathematics 
study, which aims to identify content specific barriers to students’ transition to advanced 
mathematics. One component of this study was a small-scale exploration of students’ proof 
preferences, as they related to indirect proof. This exploration involved developing and 
administering an 8-item proof preference survey, which was administered to 15 students enrolled 
in courses typically taken by 3rd and 4th year mathematics majors (e.g., Topology, Analysis) and 
8 students during the last week of an introduction to proof course in which more than half of 
students were in either their 3rd or 4th year. The survey instrument included three types of proof 
comparison tasks and two ‘proof-related’ tasks. Proof comparison tasks provided students with 
two proofs and asked the students to rate the extent to which they were confident in their 
understanding of each proof and to indicate which proof “is the most convincing” and which “is 
the best proof?” Three forms of proof comparisons items were used in the survey. The items ask 
the participants to compare: (1) a direct proof to an indirect proof (Type I); (2) a Constructive to 
a Non-constructive Existence Proof (Type II); and (3) a proof by contraposition to a proof by 
contradiction (Type III). Type III items were included to gather data on the question of whether 
or not there might be psychological distinctions to be made between these two forms of indirect 
proof. Type IV survey items were ‘proof-related’ comparison tasks, which asked participants to 
select a statement to prove out of three statements. Choices for the three statements include a 
principal statement (∀n, P ⇒ Q) and two secondary statements. Secondary statements were 
either of the logical form ∀n, ~ Q ⇒ ~P, which is the Contra-P form, or of the form “there exists 
no n such that, P∧~ Q,” which is the Contra-D form.  

Following the administration of the surveys, 6 video-recorded, one-hour clinical interviews 
were conducted. During the interviews, participants were asked to discuss their responses to 
three of the proof comparison tasks and one statement selection task. The interviews were semi-
structured to allow for clarification questions. The questions used in the interviews included 
asking the student to explain: (1) each proof to the interviewer (Can you explain this argument to 
me?); (2) any similarities or differences between the two arguments (Do you see any similarities 
or differences in the two arguments?) (3) his or her selection of the most convincing argument 
and of the best proof (Can you share with me how you thought about the two proofs as you 
decided which was more convincing? Can you share with me how you thought about the two 
proofs as you decided which was the best proof?). Furthermore, if the student did not comment 
on the proof type, students were asked at the end of the discussion of a comparison task, “would 
you describe one or either of the proofs as being a particular type of proof?” Thought of in terms 
of the work of Mejia-Ramos, Fuller, Weber, Rhoads, and Samkoff (2012), the questions asked of 
participants were primarily local comprehension questions, which they describe as questions 
focused on: “students’ understanding of key terms and statements in the proof;” “students’ 
knowledge of the logical status of statements in the proof and the logical relationship between 



these statements and the statement being proven;” and, “students’ comprehension of how each 
assertion in the proof follows from previous statements in the proof and other proven or assumed 
statements” (p. 15). Additionally, some of the questions could be considered holistic - focused on 
students’ understanding of the “proof as a whole” (p. 15).  

It should be noted that in Mejia-Ramos et al., the taxonomy of comprehension questions is 
geared towards evaluating students’ comprehension of a single proof rather than a pairing of two 
proofs. Thus, this study’s comparative questions (i.e., those focused on similarities and 
differences) do not fit within their taxonomy of comprehension questions. However, it can be 
argued that asking students to engage in comparative acts may provide additional insights into 
their comprehension of a given pair of arguments. Specifically, features that students may feel 
are not noteworthy may be important to making distinctions between two arguments. Indeed, 
comparative tasks may provide a context for eliciting a richer model of students’ understanding 
of a given argument. Nevertheless, if such activities were non-normative then one could argue 
that it would be unlikely to provide deeper insight since student may be unprepared to engage in 
comparative work. Yet, it seems unlikely that this is the case. Students often engage in such 
activities. For instance, having constructed a proof for a theorem a student may compare their 
proof to an alternative proof provided by a teacher, a classmate, or in a text. One final issue to 
consider is that comparative questions may draw attention to specific features while diminishing 
others, a potentially problematic aspect of such questions. For instance, a comparison between 
two indirect proofs, such as in Tall (1979), might draw attention to specific details of the 
arguments, whereas comparison between an indirect and direct proof may draw attention to the 
indirect nature of an argument. In the study reported, however, understanding students’ 
interpretations of the structure of indirect arguments was a primary research goal. Thus, the 
inclusion of comparative questions was warranted due to their potential focusing effect. 
Analytic Approach 

The analysis of the video-recorded interview data was informed by two constructs 
developed by Selden and Selden (1995): unpacking and proof framework. Unpacking refers to 
unpacking the logical structure of a statement; that is, the development of a symbolic, set-
theoretic statement from a statement written in words. For example, the statement, “A function f 
is increasing on an interval I means that for any numbers x1 and x2 in I, if x1 < x2 then f(x1) < 
f(x2)” could be unpacked as, “(∀f ∈ F)(∀I ∈ I)[(f increasing on I) ⇔ (∀ x1 ∈ I)(∀ x2 ∈ I) {((x1 < 
x2)⇒ f(x1) < f(x2))}]” (Selden & Selden, 1995, p. 138).  The notion of unpacking was 
incorporated into the analyses due to observations of students’ use of symbolic statements during 
the clinical interviews and in written survey work. A proof framework is a “representation of the 
‘top-level’ logical structure of a proof, which does not depend on detailed knowledge of the 
relevant mathematical concepts”    (p. 129). The construct of a proof framework was relevant to 
the analysis since students were asked both to explain the proofs and to describe the proof type, 
questions which might provoke a students’ proof framework. Lastly, since some interview 
questions focused on the extent to which the students’ found a particular argument convincing, 
the construct of a proof scheme – “what constitutes ascertaining and persuading for that person” 
(Harel & Sowder, 1998, p. 244) – informed the analysis.  
Findings 
 The findings reported in this paper focus on students’ successful attempts interpreting and 
evaluating indirect proofs and the logical equivalence of secondary statements. Attention was 
drawn to this aspect of the data for two reasons. First, when asked to explain the indirect 
arguments many students experienced difficulties with the proofs by contradiction, which drew 



attention to the few successful students. Second, roughly 1/3 of the students did not successfully 
identify the contra-D form statements as equivalent in the Type IV survey items. Among the 
successful attempts was Anna’s response, which is shown in Figure 1. This response pointed to 
the possibility that successful students may use a partial unpacking of the theorems and their 
proofs when determining logical equivalence and/or structure. Partial unpacking refers to the use 
of symbolic statements that are not fully quantified and would not be considered an unpacking as 
defined by Selden and Selden (1995) but do represent a movement from written words towards a 
symbolic form, hence the name partial unpacking. Observe that in Figure 1 the student has noted 
an implication (P⇒Q), then identified Alternative 1 as the contrapositive (~Q⇒~P) and 
employed a truth table in an effort to determine the logical equivalence, (P⇒Q) ≡ ~ (P∧~Q). The 
student also noted, “Obviously, logical dissection of words is difficult for me at times.” This 
remark points to the student’s need to move away from a word-based language to a symbolic 
language in order to analyze the underlying logical structure. Thus, through a partial unpacking 
and a series of symbolic manipulations the student appears to have ascertained the equivalence of 
the statements in question; in other words, it appears that the student was “thinking of the 
symbols as though they possess a life of their own without reference to their possible functional 
or quantitative reference” (p. 250), in other words, a symbolic proof scheme was enacted.  
 

 
Figure 1. Anna’s Survey Response 

 
The Anna’s response was an anomaly among the written survey responses. It was not until the 
clinical interviews that reasoning similar to that in Figure 1 was observed. Due to space 
limitation, in this paper we will describe only one of the two successful cases. 



 Lillian was a sophomore mathematics major at the time of the interview. She was 
observed reasoning symbolically during a proof comparison task and a statement equivalence 
task. The proof comparison task is shown in Appendix A. When asked to describe the two 
arguments, Lillian immediately described Argument A as a proof of the contrapositive and then, 
after a period of hesitation, described Argument B as a direct proof. She was then asked to 
explain how Argument B was a direct proof. Proceeding, Lillian was observed rereading 
Argument B at least four times, repeatedly returning to the first sentence, and underlining the 
two assumptions stated. After approximately 90 seconds she had not yet responded to the 
interviewer’s question. The interviewer proceeded by asking Lillian why she had repeatedly 
underlined “x and y have opposite parity.” She responded by saying “it’s not correct” and then “I 
need to read it again.” After another 45 seconds, Lillian sat back from the paper and remarked, 
“Oh, I see … it’s correct” and then noted, “the conclusion is contrapositive, umm, contradiction 
to what they assumed.” Analysis of her scratch paper, showed two statements, P→Q and 
~Q→~P, both of which she had gestured towards during her reading of the arguments, most 
often crossing over the latter statement – a gesture one could interpret as a “crossing out.” At this 
point in the interview it was unclear how Lillian had arrived at the conclusion that the proof was 
valid. However, what was clear from her remarks, gestures, and markings was that she had 
struggled interpreting Argument B, had recognized the use of two assumptions, one of which 
was a negation of the conclusion of Theorem 6, and that she knew the basic structure of the 
arguments was not of the form ~Q→~P. With that said, deeper insight into Lillian’s reasoning 
was obtained from her response to the Theorem 7 statement equivalence task (see Figure 3). As 
was the case with the previous task, Lillian immediately identified Alternative 1 as a statement of 
the contraposition of the original theorem. When asked to explain, she labeled “n is not a perfect 
square” as Q and “n(mod 3)≡ 2” as P and explained that Alternative 1 was of the form ~Q→~P.  
  

Theorem	  7:	  For	  all	  positive	  integers n, if n mod(3) = 2, then n is not a perfect square. 
Alternative	  1	  for	  Theorem	  7:	   Alternative	  2	  for	  Theorem	  7:	  
For	  all	  positive	  integers n, if	  n	  is	  a	  perfect	  square,	  	  
then	  n	  mod(3)	  ≠	  2.	  

There	  exists	  no	  positive	  integer	  n	  such	  that	  n	  mod(3)	  =	  2	  	  
and	  n	  is	  a	  perfect	  square.	  

 
She then proceeded to examine Alternative 2 by rereading the statement multiple times and 
making a series of markings on her scratch paper, which are shown in Figure 4. She then 
proceeded to explain that the original statement was “for all” and that you could prove for all 
statements by, “showing that there exists no n such that it’s … it’s statement is false,” she then 
gestured to her written work (the vertical arrow, phase 3) and noted that “these are equivalent,” 
in reference to the statements P→Q and ~P ∨ Q, “so, this (points to P∧~Q) is the negation.” 
 

       P→Q     P→Q  
       
   ~P ∨ Q 

    P→Q  
        
~(~P ∨ Q) ≡ (P∧~Q)  

  P→Q  
        
~(~P ∨ Q) ≡ (P∧~Q)  
no n | P∧~ Q 

Phase 1 Phase 2 Phase 3 Phase 4 

Figure 4. Phases of Lillian’s Written Work 
Lillian’s response resembles that shown in Figure 1 in that she produced a partial unpacking and 
then worked within the symbolic statements to determine equivalence, without any observable 
reference to the meaning of the statements, other than to confirm their logical status (e.g., that 
one statement was the negation of another). Thus, ascertainment of the validity of an equivalence 
occurred at a symbolic level through the students’ production of a partial unpacking and series of 
symbolic manipulations. Returning to Lillian’s response to Theorem 6, her work with Theorem 7 



offers a plausible rationale for her sudden realization of the structure of Argument B. Early in her 
work on Theorem 6, Lillian produced two symbolic statements P→Q and ~Q→~P, and reread 
Argument B repeatedly. Her crossing-out gestures indicate that she repeatedly rejected the idea 
Argument B was of either form. Thus, though it is unclear how she was able to move past her 
rejection of the argument and come to recognize it as disproving rather than proving P∧~Q, it is 
clear that a set of partially unpacked statements were used as tools for examining the logical 
structure of the argument. Moreover, with both tasks, Lillian constructed a series of partially 
unpacked statements and reasoned with those symbols as though “they have a life of their own” 
– in other words, she used a symbolic proof scheme.  
 It is also the case that Lillian and many other students recognized that within Argument B 
(and the other indirect arguments) a contradiction occurred and then used this realization to 
discuss the structure of the proof by contradiction. When asked to explain how the argument 
related to the theorem, however, many students became confused and were unable to make 
connections between the theorem statement and the basic assumptions in the initial sentence of 
the argument. Thus, it appears that a rudimentary proof framework for proof by contradiction 
was invoked among all of the students but that this was not a characteristic that distinguished 
successful from unsuccessful students.  
Concluding Remarks 

Researchers, such as Harel and Sowder (1998) and Healy and Hoyles (2000), have 
provided many examples of students’ unproductive use of a symbolic proof scheme in their 
research. Few if any researchers have provided evidence of productive uses – of what Harel et al. 
alluded to when they remarked, “ symbolic reasoning can either be superficial and 
mathematically vacuous, or a very powerful technique” (p.250). The findings in this paper, 
however, highlight the possibility of a potentially productive use of the symbolic proof scheme – 
one that may aid students in their effort to navigate the logic complexities and metatheoretical 
issues of indirect proofs. Moreover, the successful students' approaches are suggestive of 
activities, such as partially unpacking, which are rarely found in proof texts, yet may benefit 
students in their efforts to understand the structure of indirect proofs. 
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Appendix A 
 
	  

Theorem	  6:	  If	  x	  and	  y	  are	  two	  integers	  for	  which	  x	  +	  y	  is	  even,	  	  
then	  x	  and	  y	  have	  the	  same	  parity.1	  

	  
Argument	  A:	  	  

	  
Assume	  x	  and	  y	  have	  opposite	  parity.	  Since	  
one	  of	  these	  integers	  is	  even	  and	  the	  other	  
odd,	  there	  is	  no	  loss	  of	  generality	  to	  suppose	  
x	  is	  even	  and	  y	  is	  odd.	  Thus,	  there	  are	  
integers	  k	  and	  m	  for	  which	  x	  =	  2k	  and	  y	  =	  
2m+1.	  Now	  then,	  we	  compute	  the	  sum	  x	  +	  y	  
=	  2k	  +	  2m	  +	  1	  =	  2(k+m)	  +	  1,	  which	  is	  an	  odd	  
integer	  by	  definition.	  
	  

Argument	  B:	  	  
	  
Assume	  x	  and	  y	  are	  two	  integers	  for	  which	  x	  
+	  y	  is	  even	  and	  that	  x	  and	  y	  have	  opposite	  
parity.	  Since	  one	  of	  these	  integers	  is	  even	  
and	  the	  other	  odd,	  there	  is	  no	  loss	  of	  
generality	  to	  suppose	  x	  is	  even	  and	  y	  is	  odd.	  
Now	  then,	  we	  compute	  the	  sum	  x	  +	  y	  =	  2k	  +	  
2m	  +	  1	  =	  2(k+m)	  +	  1,	  which	  is	  an	  odd	  integer	  
by	  definition.	  However,	  by	  assumption	  x	  and	  
y	  are	  two	  integers	  for	  which	  x	  +	  y	  is	  even.	  
Since	  x	  +	  y	  cannot	  be	  odd	  and	  even,	  either	  x	  
and	  y	  must	  have	  the	  same	  parity	  or	  x	  +	  y	  is	  
not	  even.	  
	  

1.	  I	  am	  confident	  about	  my	  understanding	  of	  
Argument	  A.	  (Please	  mark	  one)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
Strongly	  agree	  	   Agree	  	  	  	  Disagree	  	  	  	  Strongly	  disagree	  

2.	  I	  am	  confident	  about	  my	  understanding	  of	  
Argument	  B.	  (Please	  mark	  one)	  
	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	   	  
Strongly	  agree	  	   Agree	  	  	  	  Disagree	  	  	  	  Strongly	  disagree	  
	  

3.	  Which	  argument,	  in	  your	  opinion,	  is	  the	  most	  convincing?	  	  	  	  	  	  	  	  	  	  	  	  	  Argument	  A	  	  	  	  	  	  	  	  	  	  	  Argument	  B
	   	  
Please	  explain	  your	  selection.	  (If	  you	  need	  additional	  space	  please	  use	  the	  back	  of	  this	  page.)	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
4.	  Which	  argument,	  in	  your	  opinion,	  is	  the	  best	  proof?	  	  	  	  	  	  	  	  	  	  	  	  Argument	  A	  	  	  	  	  	  	  	  	  	  	  	  	  Argument	  B	  
	  
 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1. Two	  integers	  are	  said	  to	  have	  the	  same	  parity	  if	  they	  are	  both	  odd	  or	  both	  even.	  
	  


