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This report considers student proof construction in small groups within an inquiry-orientated  
abstract algebra classroom. During an initial analysis, several cases emerged where students  
used familiar knowledge from another mathematical domain to provide informal intuition.  I will  
report on two episodes in order to illustrate how this intuition could potentially aid or hinder the  
construction of a valid proof.
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A great deal of attention has been given to student construction of proof particularly in an 
abstract algebra setting (Weber & Larsen, 2008). Hazzan (2001) has observed that 
undergraduates’ difficulties in group theory may partially be attributed to the abstraction level.  
Both Hazzan (2001) and Selden and Selden (1987) found that students often retreat to familiar 
number systems when working on algebra proofs.

As part of a larger project implementing a group theory curriculum based on guided 
reinvention of group and isomorphism concepts, this study considers student proof construction 
in small groups. Through an initial analysis, several cases emerged where students used familiar 
knowledge from another mathematical domain to provide informal intuition for an argument.  
This divergence from abstract algebra is consistent with the return to familiar contexts seen with 
Hazzan (2001) and Selden and Selden (1987) but unfolds in a different manner. In this proposal, 
I will present two such cases where students utilized prior knowledge in an unexpected way 
during the informal stage of their proof development.

Theoretical Background
Zandieh, Larsen and Nunley (2008) discussed the role of student intuition as students moved 

from informal notions to formal proofs. The researchers suggested, “As students search for key 
ideas and work to relate a key idea to the arguments needed to provide a rigorous proof, they 
often need to develop an intuitive sense of how the system in question works” (p. 122). The key 
idea connects intuition with a formal proof (Raman, 2003).  Referencing Fischbein (1982), 
Zandieh, Larsen and Nunley (2008) categorized two types of intuition in proof: affirmatory and 
anticipatory. The former can be coercive in that “an individual with this intuition may not be able  
to consider other alternatives” (p. 126). Whereas, anticipatory intuition is associated with a 
feeling of certitude, but the “intuitions anticipate a further refinement” into formal proofs (p.  
126).

I will consider two episodes where informal notions emerge when students bring prior 
mathematical knowledge into the abstract algebra context. The first example will illustrate  
affirmatory intuition whereas the second will illustrate anticipatory intuition.

Research Methodology and Problem Context
Four implementations of an inquiry-based Algebra course were videotaped over the course of 

two years. This course largely served as an introduction to group theory where many students 
were engaged in proving for the first time. Video data from these implementations were analyzed 



in this report. An initial search served to isolate the portions of the curriculum where students 
were prompted to prove in a small group setting. During this process, I noticed several 
occurrences of students referring to mathematical contexts outside of abstract algebra while in 
the early stages of constructing a proof. After consulting the literature, these videos were 
analyzed again with attempts to categorize the intuitions as affirmatory or anticipatory. 

I will consider episodes from two classrooms implementing a curriculum where formal 
abstract algebra concepts are developed using students’ informal knowledge. At this stage, the 
students have developed a familiarity with the symmetry group of an equilateral triangle. They 
have developed the symbols in terms of R and F to represent a 120 degree rotation and a vertical 
reflection respectively. Through their investigations they've developed a list of rules that describe 
the composition of symmetries (see Figure 1). Typically, the existence of inverses are not 
included.  For more details of this curriculum see Larsen (2012). 

While creating a table for the symmetries, students notice the pattern that each symmetry 
appears exactly once in each row. In order to motivate the idea of inverse elements, the prompt in 
Figure 2 was given. The students worked on proving both parts in small groups. 

Results
The following cases illustrate students making connections to familiar mathematical contexts  

when beginning the informal process of proving the conjectures above. Each case comes from a 
different class where groups of four students worked together to attempt to prove the statements. 
The first case serves as an example where the intuition did not lead to the construction of a proof. 

Figure 1. Student Rules for Triangle Symmetries.

Figure 2. Prompt



The second case illustrates how a student using prior knowledge provides the intuition for the 
key idea of inverses. 

Case 1: Prime Numbers
In this first case, Bob began the discussion by introducing an analogy to prime numbers 

stating, “It's almost like prime numbers. You can have the composition of all of them but they 
trickle down to a single action. And it's 8 distinct actions, or I'm sorry not 8, 6 distinct positions 
[referring to the six symmetries of the triangle] in terms of orientation and location.” He 
continues his analogy, “Kind of like in the sense of a prime number, you can do all sorts of things 
to it to make it look different, when you factor it out into a prime you can't go any further. You 
can't split it any further without breaking it into a decimal.” Bob is attempting to connect his  
ideas of symmetries with his knowledge of prime number factorization. 

Bob and his group-mates continue the conversation with reference to this simplification idea.
Roger: I see the spirit of what you are talking about and it's something in that uniqueness 

that you get that if you don't have ...if there are no repeats in the rows and columns that 
you are going to compose, then you can't get a repeat in that row or that column.

Bob: Because it always factors down to something that's already there.
At this point Roger and Bob are attempting to coordinate the connection to prime numbers 

with the uniqueness of each element in a row. This connection appears backwards since they 
were considering the multiplication of symmetries as opposed to factoring. They may have been 
confounding the idea of closure (that any combination of symmetries reduces to a known 
symmetry) with the property of appearing exactly once in each row. Alternatively, they may be 
thinking of one of the factors being held constant acting the same as a symmetry multiplied on a 
given row. This latter interpretation would align with the statements that follow. After the prime 
number discussion, Winston presented the following proof:

Winston: Since there are six unique functions and in each row and column these functions 
are composed with exactly one unique function that row or column must contain 
six unique functions because they all are equal to the same function. 

Gayle: They are all unique so anything you do with them is going to be unique.
I would hypothesize that this prime number metaphor was serving an affirmatory role. All 

proof attempts resembled Winston's above where the uniqueness served as the reasoning.  None 
of the group members considered justifying further. Instead, the intuition acted as a hindrance to 
the construction of a valid proof. 

Case 2: Invertible Functions
In this second case, Logan contributed knowledge of invertible functions to make an 

argument for the conjecture: 
Logan: Each of the operations is invertible because for any of the operations like R there 

is something you can compose with that to turn it into the identity. So if you have 
R and R squared and put them together, then you get the identity. And since it's
invertible then it must be, um, one to one. I don't remember [inaudible.] Since it's 
invertible the same entry can never appear in the same row-

Henry: How does it being invertible prove that?
Logan: Because say you take FR and what's the inversion of that (FR)-1. Actually, FR is 

the inversion of itself. So you have a bunch of starting points and you are mapping 
using a function FR and we know that if we do FR again, then it's going to map 



them all back to the same place, so we know that we can't ever map two to the same one 
or we wouldn't be able to map it back. Because we know that FR FR equals I. So that 
means for any input rotation FR. For any two input rotations into FR, you can't get the 
same output rotation (see Figure 3).

Logan went on to conclude that “For each of them there is an inverse. Because they are 
invertible, they all have to be 1-1 and onto.” As evidenced by the diagram in Figure 3, Logan 
was able to build an intuition about the use of inverses. I would conjecture that this knowledge 
came from precalculus or other study of functions based on his use of a function diagram. Logan 
was identifying symmetries with functions mapping the group onto itself. 

I would argue that this connection to invertible functions served in more of an anticipatory 
role. Logan used his function diagram and connected it to each symmetry having an inverse. The 
anticipatory intuition was further evidenced later in the conversation as the group attempted to 
formalize the idea culminating in Henry suggesting a proof by contradiction with direct reference 
to Logan's inverse suggestion.

Discussion
These episodes demonstrate two very different paths into a familiar domain. In the first case, 

the student group created an analogy to prime numbers that ultimately left them unable to prove 
the conjecture. In the second case, the introduction of invertible functions provided the 
foundation for the key idea of inverses. Further research into the types of connections made by 
novice provers could help inform instruction in order to encourage students to develop the 
intuition necessary to become successful in proof construction. 

Questions for the Audience
1. What role can instructors play to encourage the formation of anticipatory intuition? Likewise,  
how can instructors help students move beyond affirmatory intuitions?
2. Have you noticed students appealing to prior mathematical knowledge during the intuition 
stage of proving?

Figure 3. Logan's Function Diagram for the inverse of FR 
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