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This article documents a new way of conceptualizing vectors in college geometry. The 
complexity and subtlety of the construct of vectors highlight the need for a new framework 
that permits a layered view of the construct of vectors. The framework comprises three layers 
of progressive refinements: a layer that describes a global distinction between physical 
vectors and mathematical vectors, a layer that recounts the difference between the 
representational perspective and the cognitive perspective, and a layer that identifies 
ontological and epistemological obstacles in terms of transitions towards abstraction. Data 
was gathered from four empirical studies with ninety-eight total students to find evidence of 
the three major transition points in the new framework: physical to mathematical coming 
from the first layer, geometric to symbolic and analytic to synthetic from the second layer, 
and the prevalence of the analytic approach over the synthetic approach while developing 
abstraction enlightened by the third layer. 
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The complexity and subtlety of the construct of vectors motivate the necessity of the new 
framework that permits: differentiating abstraction from physical embodiment, intertwining 
the representational perspective and the cognitive perspective on vectors, and revealing 
cognitive development on geometric representations. These needs guided us to deliver a new 
framework for conceptualizing the construct of vectors. By building a new framework and 
validating it, I explored a complex construct of vectors in mathematics with respect to 
mathematical abstraction, multiple representations, and cognitive development. 

The primary goal of the framework is to give a new way to discuss the complexity of 
vectors, both conceptual and pedagogical, that students may grapple with in order to 
understand vectors in geometry effectively. 
 

Complexity of the Construct of Vectors 
Vector as a Translation 

When representing a geometric translation with a vector in an arrow form, the complexity 
of vector representations comes out in a cognitive sense. Recent critical studies on students’ 
experiences with vectors focus on physics education (Aguirre and Erickson, 1984; Aguirre, 
1988; Hestenes et al., 1992; Heller and Huffman, 1995; Knight, 1995; Savinainen and Scott, 
2002; Nguyen and Meltzer, 2003; Flores et al., 2004; Coelho, 2010). These studies focused 
more on the interrelationship among physical quantities, not on vectors themselves. These 
physical embodiments of vectors help students understand vectors initially, but soon block 
the progression to advanced and abstract understanding of vectors. 



between physical vectors based on physical embodiment and mathematical vectors regarding on

mathematical abstraction. Differentiating mathematical abstraction from physical embodiment is

essential to understand the complexity and subtlety of vectors in mathematics.

Students’ experiences with the concept of vectors vary over physics and mathematics, but rel-

atively few studies have focused on an analytic, detailed explanation or examination of learning

of vectors in mathematics compared to physics. Recent critical studies focus on physics education

(Aguirre and Erickson, 1984; Aguirre, 1988; Hestenes et al., 1992; Heller and Huffman, 1995;

Knight, 1995; Savinainen and Scott, 2002; Nguyen and Meltzer, 2003; Flores et al., 2004; Coelho,

2010). These studies covered only algebraic aspects of vectors with simple addition/subtraction op-

erations and focused only on the interrelationship among physical quantities such as displacement,

velocity, acceleration, and force, not vectors themselves. This physical embodiment of vectors

helps learners understand the vectors initially, but soon block the progression to the advanced and

abstract understanding of vectors.

Figure 1.1: Vectors representing a translation

For example, in Figure 1.1 vector
�!
f looks far away from the triangle and nothing to do with

the translation. Vector
�!
d pushes the triangle. Vector �!e pulls the image of the triangle, not the
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Figure 1.2: Action-Effect Approach (Watson, 2004)
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Fig. 1.1 Vector as a Translation Problem 

For example, in Figure 1.1 physically all the vectors can show different meanings such as 
push, pull, moving vertices, and penetrating etc. However, all the vectors represent the same 
translation of a triangle even though their locations are quite scattered and different. The 
figure also shows all the vectors are equivalent just as all the vectors represent the same 
translation, although their equivalence is not clearly explained by the translation action with 
the given triangle and the same effect those vectors would bring. This difference between 
physical motion and mathematical motion (Freudenthal, 1983), and the idea of the vector 
equivalence relation with ‘action-effect’ approach (Watson et al., 2003; Watson, 2004) show 
the difference between physical embodiment and mathematical abstraction. 

For a better observation and description of this complexity and subtlety of vectors, I need 
a new framework that integrates and balances these intuitive understanding and abstract 
understanding of vectors in college mathematics. 
Vector as a Point, Point as a Vector 

The complexity of vectors does not allow students an easier translation/conversion from 
one representation to the other. A combined view of the representational perspective and the 
cognitive perspective helps us understand this translation/conversion from one representation 
to the other. 

complicated as in Figure 1.4. The term ‘vectors’, ‘points (vertices)’, and ‘arrows’ are not easily

distinguishable in these two examples. Similar difficulty in distinguishing ‘vectors-as-arrows’ and

‘vectors-as-points’ is introduced by Hillel (2002) as well.

(a,b)+(c,d) = (a+ c,b+d)

Figure 1.3: Determine the sum of two vectors. (NCTM, 2000)

According to Hillel, undergraduate linear algebra courses generally include three modes of de-

scription for basic objects and operations. They are (a) the abstract mode using the language and

concepts of the general formalized theory; (b) the algebraic mode using the language and concepts

of the more specific theory of Rn; (c) the geometric mode using the language and concept of 2- and

3-spaces. He distinguished ‘vectors-as-arrows’ and ‘vectors-as-points’ in terms of modes of de-

scription, and criticized that in practice, most instructors tended to shift back and forth between the

arrow and point depiction of vectors ‘implicitly’ and ‘unconsciously’. Hillel (2002) offered unique

insight into this problem by putting emphasis on translations/conversions between representations

with the modes of description. However, his argument did not show enough clarity on the sub-

tlety of vectors in a sense that the difference of modes of description cannot capture this ‘implicit’

and ‘unconscious’ changes. ‘Vectors-as-arrows’ and ‘vectors-as-points’ are not just a problem of

modes of description, but also a problem of how students think about representations. The study of

modes of thinking by Sierpinska (2002) reveals an expansion of the discussion. Sierpinska (2002)

classified students’ reasoning in linear algebra courses into three modes: Synthetic-geometric,
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Find a matrix M so that MA = A0, MB = B0, MC =C0 where the points are represented as
vectors (NCTM, 2000).

Figure 1.4: Points are represented as vectors.

analytic-arithmetic, and analytic-structural modes. Sierpinska focused more on students’ thinking

and reasoning about epistemology.

These classifications of vectors motivated us to consider multiple perspectives on vectors: rep-

resentational and cognitive. In the similar context, one observation that Hillel (2002) made about

‘vectors-as-arrows’ and ‘vectors-as-points’ brought up a refreshing idea. By emphasizing peda-

gogical and psychological advantages related with physics on ‘vectors-as-arrows’, he has displayed

student’s possible preference of one representation to the other in a specific setting or for a purpose.

However, no indication is provided as to how this preference can change if the setting is different,

such as in synthetic geometry other than linear algebra. Studies on multiple representations of
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Fig. 1.2 Vector as a Point, Point as a Vector Problem (NCTM 2000) 

 
In Figure 1.2, the vector sum in arrow forms is usually accompanied by 2-tuple of 

numbers. However, it is not clear if this 2-tuple represents the terminal point of the arrow or 
the arrow itself. When geometry meets linear algebra, this problem of multiple 
representations gets more complicated. The term ‘vectors’, ‘points (vertices)’, and ‘arrows’ 
are not easily distinguishable in these two examples. Hillel (2002) criticized that in practice, 
most instructors tended to shift back and forth between the arrow and point depiction of 
vectors ‘implicitly’ and ‘unconsciously’ with three modes of description. The study of modes 
of thinking by Sierpinska (2002) reveals an expansion of the discussion as a problem of how 
students think about representations with focusing more on students’ thinking and reasoning 
about epistemology. These classifications of vectors motivated me to consider multiple 
perspectives on vectors: representational and cognitive. 



Research in the mathematics education community posits that students can grasp the 
meaning of mathematical concepts by experiencing multiple mathematical representations 
(Janvier, 1987; Kaput, 1987a; Keller and Hirsch, 1998). In this context, several standards 
documents have advocated K-12 curricula that emphasize mathematical connections among 
representations (NCTM, 1989, 2000; CCSSM, 2010). They suggest that students use 
graphical, numerical, and algebraic representations to investigate concepts, problems, and 
express results. However, these discussions are very focused on the way to talk about 
functions, not vectors, and on the way to discuss connections between representations as 
separate entities from representations themselves. Studies on multiple representations of 
vectors are few and focused on the views from linear algebra (Dorier, 2002; Harel, 1989; 
Dorier and Sierpinska, 2001). The construct of vectors is more complex than functions, so 
that graphical, numerical, and algebraic representations are not enough to describe this 
complexity (Pavlopoulou, 1993 as cited in Artigue et al. 2002).  

These observations on translation/conversion bring a need for a unified, inclusive, and 
multidimensional framework to discuss a combined view of representational and cognitive 
perspectives on the complexity of the construct of vectors. 
Geometrical Vector Sum 

What the classical representations cannot provide from the complexity of vectors is the 
cognitive development of geometric representations. Specifically, translations/conversions in 
terms of the cognitive perspective are portrayed in considerable detail as cognitive 
development theories for symbolic representations. Pavlopoulou’s research (as cited in 
Artigue et al., 2002) studied translations/conversions from one representation to the other 
(Duval, 2006). However, it is very restricted to certain forms of vectors: graphical, table, and 
symbolic representations (registers). The Action-Process-Object-Schema theory (Asiala et al., 
1996) and reification theory (Sfard and Linchevski, 1994) are based on the duality of the 
mathematical concepts and on the assumption that process conception precedes object 
conception. Sfard (1991) calls process conception operational outlook and object conception 
structural view. However, these studies are restricted to discussions of symbolic 
representations. In terms of geometric representations, Figure 1.3 describes interesting 
observations about process-object duality (Sfard, 1991; Gray and Tall, 1993, 2001; Forster, 
2000).  

�!u1

�!u2�!u3

�!u4

�!un

�!v

Figure 1.5: Vector sum and difference

arrows.

Two studies (Sfard and Thompson, 1994; Yerushalmy, 1997) articulated these differences of

procedural thinking and structural thinking. They are based on the assumption that students’ ability

to understand mathematical concepts depends on their ability to make translations among several

modes of representations. Tall et al. (1999) analyzed several theories, which describe students’

transitions from viewing mathematical ideas operationally, or as processes, to viewing them struc-

turally, or as objects. These transitions are referred to as “encapsulation” by Dubinsky (1991)

and “reification” by Sfard (1991). The Action-Process-Object-Schema theory (Asiala et al., 1996)

and reification theory (Sfard and Linchevski, 1994) are based on the duality of the mathematical

concepts and on the assumption that process conception precedes object conception. Sfard (1991)

calls process conception operational outlook and object conception structural view. However, these

studies are restricted to discussions of symbolic representations. In terms of geometric representa-

tions, Figure 1.7 describes interesting observation about process-object duality (Sfard, 1991; Gray

and Tall, 1993, 2001; Forster, 2000). When students calculate a vector sum with the tip to toe tri-

angle method, the process view of a single vector is described as shifting or moving a particle. As
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(a) Perform Operations

(b) Represent the Structure

Figure 1.6: Vector Additions

a result of the sum, students can put the resulting vector on the appropriate position, and make the

sum itself as an object in the structure of a triangle. On the other hand, in parallelogram method,

vectors are objects and moving the object with equivalence relation to draw a parallelogram is the

process of sum. This example shows that process and object are preceders and succeedors of each

other and shows further need for cognitive development as a part of the framework.

The work of Sfard (1991) views both operational and structural conceptions as important in

mathematical understanding. A structural conception enables recognition (at a glance) and manip-

ulation as a whole; an operational conception is grounded in actions, processes, and algorithms.

However, this idea of encapsulation or reification, not just in symbolic modes of representation
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vectors are objects and moving the object with equivalence relation to draw a parallelogram is the

process of sum. This example shows that process and object are preceders and succeedors of each

other and shows further need for cognitive development as a part of the framework.

The work of Sfard (1991) views both operational and structural conceptions as important in

mathematical understanding. A structural conception enables recognition (at a glance) and manip-

ulation as a whole; an operational conception is grounded in actions, processes, and algorithms.

However, this idea of encapsulation or reification, not just in symbolic modes of representation
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Fig. 1.3 Geometrical Vector Sums 

 
When students calculate a vector sum with the tip to toe triangle method, the process view 

of a single vector is described as shifting or moving a particle. As a result of the sum, 
students can put the resulting vector on the appropriate position, and make the sum itself as 
an object in the structure of a triangle. On the other hand, in parallelogram method, vectors 
are objects and moving the object with equivalence relation to draw a parallelogram is the 
process of sum. This example shows that process and object are preceders and succeedors of 
each other and shows further need for cognitive development as a part of the framework. 



The problem of identifying cognitive development in geometric representations of vectors 
poses the need for a new framework that can show the representational and the cognitive 
obstacles more clearly in terms of the transitions towards mathematical abstraction. This new 
framework brings the complexity of vectors to the surface so that one can capture the whole 
picture of encapsulation or reification both happening in a symbolic way and a geometric way 
simultaneously in the construct of vectors. 

 
Construction of the Configuration 
Those needs that I discussed in the previous chapter grounded this development of the 

framework that allows a layered view to see the complex construct of vectors. Three layers of 
progressive refinements are introduced sequentially. They have different scales of focus from 
aggregate and global dealing with the difference of physical and mathematical vectors (first 
layer) to individual and local dealing with the representational and the cognitive obstacles 
(third layer). The final construction of a configuration of vectors as a new framework based 
on the process of refinement grounded by the needs in the previous chapter is in Figure 2.1 
(Kwon, 2011).  

In the domain of mathematical vectors, each axis was hypothesized to have two important 
transitions that can be identified in the configuration. On the epistemological axis, there are 
(1) one from arithmetic to algebraic, and (2) one from analytic (procedural) to synthetic 
(structural). On the ontological axis, there are (1) one from geometric to symbolic, and (2) 
one from concrete to abstract. Among those four transitions, we will only focus on two 
transitions: analytic to synthetic and geometric to symbolic in this article.  
  

Figure 2.1: The Configuration of Vectors

in the appropriate cells is based on the three worlds of mathematics studies that also motivate the

progressive refinements of the construct of vectors.

Tall and Watson placed the notion of vector in the three worlds of mathematics: conceptual-

embodied world, proceptual-symbolic world, and axiomatic-formal world (Watson and Tall, 2002;

Watson et al., 2003; Watson, 2004; Tall, 2004b). This placement gave an idea of the direction of

cognitive development and a hierarchy of vectors.

This hierarchy and the non-congruent translations/conversions from Pavlopoulou’s work (as

cited in Artigue et al., 2002) show a structure built upon two different developmental directions:

ontological (representational) and epistemological (cognitive).

Pavlopoulou studied translations/conversions among representations for vectors with graphical,
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Figure 2.8: Analytic and Synthetic Approaches from the Third Layer

especially cognitive development along with Action-Process-Object-Schema and/or process-object

duality in geometric representations emphasized in the configuration. Such systematizing transi-

tions among representations of vectors with the ontological and epistemological perspectives is an

important feature of this configuration that was not realized before in other frameworks.

In the next chapter, I will discuss the method for gathering evidence from student data to see

if this layered view of the construct of vectors as a result of progressive refinements is reason-

able. Questions and interviews will be designed to investigate student work to find evidence of

these features of the configuration. Those are (1) Transition (A) from physical to mathematical,

(2) Transition (C) from analytic (procedural) to synthetic (structural) and Transition (D) from ge-

ometric to symbolic, (3) the prevalence of the analytic approach to the synthetic approach while

that avoid students to proceed cognitive development such as encapsulation or reification.
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Fig. 2.1 The Configuration of Vectors and Two Approaches towards Abstraction 

 
In this framework, three layers of progressive refinements are comprised. Assuming a 

difference of mathematical vectors and physical vectors, I first set up two categories: 
mathematical vectors and physical vectors. Direction of intended movement is the direction 
of the development towards mathematical abstraction wanted from students. The second layer 
describes the difference between the representational and the cognitive perspectives on 
vectors as the difference between the ontological and the epistemological perspectives. The 
third layer identifies the representational and the cognitive obstacles in terms of transitions 
towards abstraction. See Figure 2.2. 



Figure 2.2: First Layer

point serves as the origin of the configuration.

For the next step, I tried to consider multiple perspectives on the direction of intended move-

ment. I could think of two different perspectives of the development: representational and cog-

nitive. These two perspectives come from the ideas of the meaning of multiple representations

(Kaput, 1987a; Lesh et al., 1987; Goldenberg, 1995; Johnson, 1998) and Modes of Description

(Hillel, 2002) vs. Modes of Thinking (Sierpinska, 2002). With the assumption of direction, I

placed these two perspectives as ontological axis and epistemological axis on the plane of the

configuration.

2.2.2 Second Layer for Multiple Perspectives

The second layer describes the difference between the representational and the cognitive perspec-

tives on vectors as the difference between the ontological and the epistemological perspectives.

See Figure 2.3.

21

Figure 2.3: Second Layer

The origin represents an important transition from physical vectors to mathematical vectors.

With this refinement, we can see that ontologically, the origin is a shift of a view from vectors as

representations of physical quantities with physical units to vectors as representations of mathe-

matical objects, i.e., a loss of physical appearance such as units, physical directions attached to

physical objects. We can also see that epistemologically, this origin is a shift related with under-

standing of mathematical equivalence relations, i.e., a loss of physical embodiment context such

as a translation as a displacement of an object, etc. Now, the first quadrant of the configuration is

for mathematical vectors and the third quadrant is the realm of physical vectors. The focus of the

rest of this dissertation will be on the first quadrant of this layer.

The direction of each axis implies not only one intended movement towards mathematical ab-

straction, but also changes in two different perspectives: a representational change and a cognitive

change. To talk about translations/conversions from one representation to the other, these two

changes are important.
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that can be identified in the configuration. On the epistemological axis, there are (1) one from

arithmetic to algebraic, and (2) one from analytic (procedural) to synthetic (structural). On the

ontological axis, there are (1) one from geometric to symbolic, and (2) one from concrete to ab-

stract. Among those four transitions, we will only focus on two transitions: analytic to synthetic

and geometric to symbolic in the third layer.

Figure 2.5: Third Layer with two major transitions

The main transition for the discussion of vectors in the mathematical domain is Transition

(A) from physical to mathematical vectors. Along with progressive refinements, the difference

between physical vectors and mathematical vectors is getting clearer with additional layers.

From the first and second layers, we can see what I will call five transition points in the config-

uration.

Transition (A) from physical to mathematical: Transition (A) is a transition from physical un-

derstanding of a motion to mathematical understanding of a motion. Understanding of the vector
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Fig. 2.2 Three Layers of Progressive Refinement 

 
The configuration also shows the analytic approach and the synthetic approach towards 

mathematical abstraction described by the second and third layers. In terms of the 
configuration, I can describe the analytic approach as a trend of changing explicit 
representations along the ontological axis quickly from geometric representations such as 
arrows, to symbolic representations such as coordinate/column vector forms. Epistemological 
development is postponed and following symbolically after the ontological change. This 
analytic approach in the configuration can be illustrated as an upside down ‘L’ shape route 
towards abstraction. The synthetic approach is defined as the trend of changing the 
views/thinking of a geometric representation while maintaining arrow forms, from analytic 
(procedural) to synthetic (structural) first. Ontological development is postponed until the 
achievement of the change in epistemological perspectives such as from analytic (procedural) 
to synthetic (structural). This approach in the configuration marked as a reversed ‘L’ shape 
route towards abstraction. See Figure 2.1. 

 
Empirical Studies 
I will discuss the method for gathering evidence from student data to see if this layered 

view of the construct of vectors as a result of progressive refinements is reasonable. 
Research Focuses 

The focus is on evidence in student data of the following features that are hypothesized 
by the configuration of the construct of vectors: (1) the three major transition points: (A) 
physical to mathematical coming from the first layer, (C) analytic to synthetic, and (D) 
geometric to symbolic coming from the second and the third layers of the framework, (2) 
process-object duality in geometric representations, and (3) the prevalence of the analytic 
approach to the synthetic approach while developing mathematical abstraction. 
Method and Participants 

Four surveys and interviews were carried out to gather evidence on the important features 
suggested by the configuration. The results are a synthesis of the data gathered from total 
ninety-eight students who are pre-service secondary and elementary/middle level teachers. 
Multiple administrations were used to: (1) test appropriate survey questionnaire and interview 
process, (2) gather deeper knowledge of student background and idea on vectors, and (3) 
modify surveys and interviews in order to avoid any confusion derived from the questions. 
All data were collected from students located in the Midwest public university. 

After administering each survey, students were selected for interviews based upon their 
response. The selected students signed up for a one-hour block of time for their interviews on 
the day and time that was most convenient for them. Interviews were held in a neutral 
location away from the students’ classrooms and were audio-recorded for further analysis. 
Transcribed interviews were coded and analyzed in order to find evidence in student work. 
Descriptive statistics were used for the second study and the third study on which a sufficient 
number of participants were available. 



Design and Construction of Surveys and Interviews 
For the in-depth discussion of the research focus, I chose the following questions from the 

surveys and synthesized the results. See Table 3.1. Interviews were conducted with repeating 
the survey questions and asking further about what the students were thinking. Because 
questions for examining the prevalence of an approach to the other in the surveys were only 
asked to students to choose the representations, I asked students to proceed and finish the 
proof in the interview sessions. 

Key Features Related Layers Transitions Questions
Physical vs. Mathematical I A Translation,

(Translation of Polygon),
(Geometric Translation),
Rainy Day, Robot Arm

Epistemological Diff. & II A, C Translation, Polygon
Ontological Diff. A, D Rainy Day, Robot Arm

Epistemological Obst. & III (A), C Polygon, Very Long Sum
Ontological Obst. (A), D Origin, Robot Arm

Process-Object Duality III C Very Long Sum
in Geometric Representation

Prevalence of II & III C, D Cube, 4 Midpoints,
Analytic Approach Associativity

Table 3.2: Questions for Layered View of Configuration

Which vector representations do you want to use to prove the theorem, coordinate/column vec-

tor forms such as (a,b,c),

0

@
x
y
z

1

A or generic vector forms such as
�!
AB, �!u ?

(b) Proceed your proof with the preferred vector representation.

(c) Why have you preferred this representation and not another one?

(d) Prove with the other vector representation that you did not use if you can.

(e) What difficulties are you faced with, for each method? Namely, what forced you to
abandon a representation, if anything like that has happened, or what has prevented you
in reaching a final proof?

Table 3.3: Example of Interview Questions

what the students were thinking. Because questions for examining the prevalence of an approach to

the other in the surveys were only asked to students to choose the representations, I asked students

to proceed and finish the proof in the interview sessions. See Table 3.3. This helped me to see the

deeper thought process of students.

36

 
Table 3.1 Questions for Layered View of Configuration 

 
Findings and Discussions 
In this chapter, I provide evidence of some focal points (Transition A, C, and the 

prevalence of the analytic approach) that I hypothesized in Research Focus after careful 
analyses of the four consecutive empirical studies. 

The global difference between mathematical abstraction and physical embodiment is 
evident in student work (Transition A). Student data showed evidence of the different 
interpretations between ‘the same translations’ and ‘the equivalent vectors’. We usually 
assume that the concept of the vector equivalence relation in physics is the same with that in 
mathematics, because ‘directions’ and ‘magnitudes’ of vectors are used to verify equivalent 
relations in both fields. This means that the equivalent vectors are always representing the 
same translations and vice versa both in physics and mathematics. However, student work for 
‘Translation’ question (Fig. 4.1) shows the difference of the interpretation between the same 
translations and the equivalent vectors. The cluster tree diagrams (Fig. 4.2) from hierarchical 
clustering with Euclidean distance are supposed to show similar categorizations assuming 
‘the same translations’ and ‘the equivalent vectors’ are the same concept. The first cluster 
tree was made from the student responses to question (a), and the second cluster tree was 
made from those to (b). They show two different categorizations in Figure 4.2. 



Translation: A translation can be represented by a vector �!v . T�!v (P) = P+�!v for any
point P.

(a) List all vectors that do NOT represent the translation of triangle A to triangle B in
the figure.

(b) List all vectors that are equivalent to �!a .

Figure 4.1: Translation Question

mathematics. However, student work for ‘Translation’ question (Figure 4.1) shows the difference

of the interpretation between the same translations and the equivalent vectors.

In the second study, the cluster tree diagrams (Figure 4.2 and 4.3) from hierarchical clustering

with Euclidean distance are supposed to show similar categorizations assuming ‘the same transla-

tions’ and ‘the equivalent vectors’ are the same concept. The first cluster tree was made from the

student responses to question (a), and the second cluster tree was made from those to (b). They

show two different categorizations in Figure 4.2 and 4.3.

Even though geometric translations are not representing any physical quantities, students seem

to understand them through physical embodiment. They connect geometric translations to physical
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Fig. 4.1 Translation Question 
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Figure 4.2: Cluster Tree of the same translations

movements of geometric objects, and restrict their knowledge on vector equivalence relation to

equivalency of physical quantities.

This result of a quantitative analysis tells us that there is evidence of the difference between

mathematical vectors and physical vectors hypothesized in the configuration. This difference

comes from the students’ ideas of the vector equivalence relation. However, it informed us only of

a cognitive difference assuming the same form of the representation such as arrows. Could there

be an element other than a cognitive element that differentiate mathematical vectors from physical
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Figure 4.3: Cluster Tree of the equivalent vectors

vectors? In response to this inquiry, I introduced another layer of refinement for the construct of

vectors in Chapter 2. With this refinement, we could assume there existed two different perspec-

tives: epistemological and ontological perspectives when we discuss the complexity and subtlety

of the construct of vectors. The difference between mathematical and physical vectors from the

epistemological perspective (cognitive change) was evident in student work. This is a result from

the quantitative analysis above. In the next section, I will seek evidence of this ontological dif-

ference (representational change from physical to mathematical) by looking at individual student
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Fig. 4.2 Different Interpretation between Same Translations and Equivalent Vectors 

 
The existence of an epistemological obstacle as Transition (C) from procedural (analytic) 

to structural (synthetic) is also evident in student work for ‘Polygon’ and ‘A very long sum’ 
questions. This obstacle prevents students to continue calculating the binary vector sum. For 
‘Polygon’ question, students’ responses told us that question (a), (b), and (d) based on a 
triangle, a parallelogram, a rectangle figure were easier for students, but question (c) with a 
pentagon was harder to solve than other questions (Fig. 4.3). The following interview also 
shows evidence of Transition (C). 

R: “Why did you draw these middle line segments? What are they?” 
 S: “I think I was trying to do the vector addition and [...] I couldn’t really find, based on 
the method I was trying, couldn’t find the way to express the relationship together from a 
polygon or from a pentagon. [...] Normally I’ve never seen vectors arranged in that kind 
of relationship. I’ve seen them in the triangle, [...] usually in many of these, a 
parallelogram, a four sided figure, but nothing like this one.” 

From the interview with the student above, I could see that the student drew a 
parallelogram to figure out the sum. Thinking the sizes and the directions of arrows compared 
to thinking the structure that vectors lie on can be regarded as procedural thinking, because 
the sum was a binary operation and we needed those information for a binary operation. It is 
evident that there is an obstacle that prevents students using synthetic vectors or structural 
thinking. 



I could also see that students tended to use particular representations more and confine 
their understanding and using vectors in one approach rather than having flexibility of using 
both. This tendency was identified in the responses as the prevalence of the analytic approach 
to the synthetic approach. Because this prevalence is studied and regarded as a trend, and not 
a specific student’s preference, I used the collective data of twenty-nine students rather than 
concentrating on specific cases. ‘Cube’, ‘Triangle Midpoints’, ‘Associativity’ are questions 
specially designed to look into the prevalence of the analytic approach to the synthetic 
approach. The results in Table 4.4 show that the prevalence of the analytic approach to the 
synthetic approach that I hypothesized is evident in student work. 
 

Polygons: label each vector and write an equation of the relations.

question (a) (b) (c) (d)

correct 72.4% 65.5% 48.3% 69%
not correct 27.6% 34.5% 51.7% 31%

total 100 % 100 % 100 % 100 %

Table 4.4: Polygon Result from Survey II
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approach to the synthetic approach. For this reason, it is no less dubious to connect that to the

obstacles along the synthetic approach, especially to cognitive obstacles.

4.3.2 Epistemological Obstacle: Transition (C) from Analytic to Synthetic

The existence of an epistemological obstacle is evident in student work for ‘Polygon’ and ‘A very

long sum’ questions. This obstacle prevents students to continue calculating the binary vector sum.

This is Transition (C) from analytic to synthetic where the obstacle is along cognitive development

on geometric vectors in the configuration. For ‘Polygon’ question, students’ responses told us that

question (a), (b), and (d) based on a triangle, a parallelogram, a rectangle figure were easier for

students, but question (c) with a pentagon was harder to solve than other questions (Table 4.4).

From Table 4.4, it is clear that students were not familiar with vector sum on a weird shape

or a polygon with more than four sides. It is interesting to see a response that shows drawing

parallelogram sum, stopping, and saying ‘very unique arrangement’ in the regular pentagon. This

student described his experience during the interview as follows.

Figure 4.14: “Very unique arrangement”
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Fig. 4.3 Polygon Results and “Very unique arrangement” 

 
Analytic Approach Synthetic Approach No response

Cube: 41% (12) 31% (9) 28% (8)
4 Midpoints: 55.5% (16) 34.5% (10) 10% (3)
Associativity: 72.4% (21) 24.1% (7) 3.4% (1)

Table 4.2: Prevalence Result from Survey II

into this from the student data.

4.2.2 Prevalence of Analytic Approach to Synthetic Approach

Studies on prevalence are natural in a sense that we set up the developmental direction towards

mathematical abstraction by differentiating mathematical vectors from physical vectors through

the first layer and identified two perspectives to see the development in detail through the second

layer. Moreover the result of prevalence can give a motivation of further refinement because the

prevalence may be coming from harder obstacles to overcome in one developmental direction.

This evidence of the prevalence in this section will motivate us to expect the next refinement in

section 4.3.

I categorized students’ responses into two approaches: analytic and synthetic as defined in

Chapter 2. Students tended to use particular representations more and confine their understanding

and using vectors in one approach rather than having flexibility of using both. This tendency was

identified in the responses as the prevalence of the analytic approach to the synthetic approach.

Because this prevalence is studied and regarded as a trend, and not a specific student’s preference,

I use the collective data of twenty-nine students rather than concentrating on specific cases. ‘Cube’,

‘Triangle Midpoints’, ‘Associativity’ are questions specially designed to look into the prevalence

of the analytic approach to the synthetic approach. See Table 4.2. The results show that the

prevalence of the analytic approach to the synthetic approach that we hypothesized in Chapter 2 is

evident in student work.

In the ‘Cube’ question, the choice of (i) or (ii) was categorized as the choice of the analytic

approach and (iii), (iv) as the synthetic approach. The result of ‘Cube’ question implies more
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Table. 4.4 Prevalence Results 

 
In summary, I saw that the following are evident in student work when discussing the 

complexity/subtlety of vectors: (1) the difference between physical and mathematical vectors, 
(2) the multiple perspectives: ontological and epistemological, and interplay between those 
two, (3) the prevalence of the analytic approach to the synthetic approach, (4) an 
epistemological obstacle defined as Transition (C) and an ontological obstacle defined as 
Transition (D),  (5) process-object duality on geometric representations of vectors. What 
stands out most from these empirical studies is this new framework is very helpful when 
talking about the complexity and subtlety of the construct of vectors. However, these 
tentative conclusions with the configuration await further refinement and correction in the 
light of further research.  



While conducting empirical studies, unexpected evidence from the three progressive 
refinements of the construct of vectors is also shown up as limitations. These limitations 
include: (1) non-empty intersection between mathematical vectors and physical vectors, (2) 
unreasonable levels of sophistication reflected in the direction towards abstraction, and (3) 
problems in repetition of transitions and revered transitions in different contexts. These 
limitations suggest further refinement and correction of the framework as well as the 
implications for teaching and learning of vectors. 
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