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This theoretical paper describes model analysis, a quantitative research method used 

in physics education research, and our adaptation of this method to the study of proof 

schemes in a transition to proof course. Model analysis accounts for the fact that students 

may hold more than one idea or conception at a time, and may use different ideas and 

concepts in response to different situations. Model analysis is uniquely suited to study 

students' proof schemes, as students often hold multiple, sometimes conflicting proof 

schemes, which they may use at different times. Model analysis treats each student’s 

complete set of responses as a data point, rather than treating each individual response as a 

separate data point. Thus, model analysis can capture information on the self-consistency of 

a student’s responses. We collected data from a Transition to Proof course at the beginning 

and at the end of the Fall 2012 semester. We then analyzed this data using traditional 

descriptive statistics as well as model analysis. We find that model analysis offers significant 

insights not offered by traditional analysis. 
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Introduction and Background 

The idea of proof is central to mathematics, but the ability to write (or even to read) 

proofs is notoriously difficult for students to develop. One barrier to student success in proof 

writing is a poor concept of what makes a mathematical proof. Several researchers have 

developed taxonomies to describe the various notions of proof held by students; perhaps the 

most extensive is Harel and Sowder's (1998, 2007) taxonomy of proof schemes. Proof 

schemes describe the type of argument an individual (or group) finds to be a convincing 

mathematical proof. This taxonomy has been successful in helping researchers to understand 

one source of students' difficulty with mathematical proof: when students have inadequate 

proof schemes, they have difficulty in writing, or even understanding, mathematical proof 

(Recio & Godino, 2001; Housman & Porter, 2003; Zazkis & Liljedahl, 2004). 

While current research has successfully used the taxonomy of proof schemes to 

understand some of the difficulties that individuals have in writing proofs, Harel and Sowder 

(2007) have asserted that proof schemes can develop at the level of a group or community; 

for instance, the community of learners in a given classroom. To our knowledge, no current 

research has examined proof schemes at the community level. 

In this paper we will discuss how we adapted the method of model analysis, a technique 

pioneered by physics education researchers Bao and Redish (2001), to analyze proof 

schemes. Model analysis treats each student’s complete set of responses as a data point, 

rather than treating each individual response as a separate data point. Thus, model analysis 

can capture information on the self-consistency of a student’s responses. This allows the data 

to be analyzed with the understanding that students do not always use the same conceptions 

in response to every situation. This point is particularly important for analyzing proof 

schemes, as students often use different proof schemes to understand or write proofs in 

different contexts.  

Our research question is the following: 

What insights can model analysis provide into community-level proof schemes that 

traditional quantitative analysis cannot? 



Review of Relevant Literature 

We primarily draw from two pieces of research: Harel and Sowder's taxonomy of proof 

schemes, and Bao and Redish's method of model analysis. 

Proof Schemes 

Harel and Sowder have developed a framework for describing students' overall 

conception of what justifies a mathematical proof, which they refer to as a proof scheme. The 

original framework (Harel & Sowder, 1998) is one of several understandings of proof 

discussed by Balache (2002), and is perhaps the most extensive of such taxonomies. This 

framework of proof schemes has been used in several studies (Recio & Godino, 2001; 

Housman & Porter, 2003; Zazkis & Liljedahl, 2004) as a taxonomy for students' conceptions 

of their justification for proof. Harel and Sowder define proof scheme with the following: “A 

person's (or community's) proof scheme consists of what constitutes ascertaining and 

persuading for that person (or community)" (Harel & Sowder, 2007). Harel and Sowder's 

taxonomy consists of seven major types of proof scheme, organized into three broader 

categories: external conviction, empirical, and deductive. External conviction proof schemes 

are possessed by students who are convinced a theorem is true by external forces; empirical 

proof schemes describe the proof schemes of students who are convinced by evidence, rather 

than logical reasoning; deductive proof schemes construct and validate theorems by means of 

logical deductions. An individual's proof scheme may not consistently fit into a single 

category. Rather, the category of proof scheme can depend on context, and different contexts 

may activate different categories of proof scheme. 

Model Analysis 

The proposed research will make use of model analysis, a quantitative analysis technique 

developed by Bao and Redish (1999; 2001) for analyzing students’ concepts of force in 

physics education research. According to Bao and Redish (2001), “The method is especially 

valuable in cases where qualitative research has documented that students enter a class with a 

small number of strong naive conceptions that conflict with or encourage misinterpretations 

of the scientific view." Michael Oehrtman (2006) has successfully used model analysis to 

analyze students’ concepts of functions in first-year calculus courses. 

The term model, as used by Bao and Redish, refers to a mental model of a particular 

concept, including ideas, conceptions, and beliefs about the concept. Proof schemes, then, can 

be thought of as a “model" of the concept of proof. Model analysis will be detailed in the next 

section, where we describe how it will be adapted for our project. 

Bao and Redish describe the method of model analysis as consisting of five steps (2006). 

These steps, and how they were adapted for our project, are as follows: 

(i) Through systematic research and detailed student interviews, common student models 

are identified and validated so that these models are reliable for a population of students 

with a similar background. (Bao & Redish, 2006)  

This step describes what Harel and Sowder accomplished when creating their taxonomy of 

proof schemes (Harel & Sowder, 1998). These categories were used as the “models" 

described by Bao and Redish. 

(ii) This knowledge is then used in the design of a multiple-choice instrument. The 

distracters are designed to activate the common student models, and the effectiveness of 

the questions is validated through research. (Bao & Redish, 2006) 

For this step, we use the questionnaire developed by Stylianou and Blanton (in press). The 

effectiveness of these questions has been validated by their research. The questionnaire 

present four theorems, and for each theorem, asks students to choose from four different 

arguments which they believe to be the closest to their own approach, which they consider to 



be the most rigorous, and which they consider the most explanatory. Stylianou and Blanton 

categorize each of these responses with a proof scheme (deductive or empirical) and a style 

(symbolic or narrative for deductive proofs, visual or numeric for empirical proofs) for a total 

of four types. We have modified the questionnaire slightly by allowing a response of “None 

of the above" to some questions, but this alteration should not invalidate the effectiveness of 

the questions. 

(iii) One then characterizes a student's responses with a vector in a linear “model space" 

representing the (square roots of the) probabilities that the student will apply the different 

common models. (Bao & Redish, 2006)  

The model space described in this step is represented mathematically by a linear vector space, 

where each common model is represented by an element of an orthonormal basis. That is, 

each of the categories of proof scheme (empirical and deductive) will be assigned a 

dimension in the vector space. We also assigned (as do Bao and Redish) a third dimension to 

a “null" model, considered to be activated when students choose a response of “none of the 

above." For each student, we created a vector inside this model space that represents the 

student's responses to the questionnaire. Each entry in the vector is meant to represent the 

probability with which the student uses the associated category of proof scheme to respond to 

similar types of questions. Of course, these probabilities can only be approximated by the 

student's responses to the questionnaire. 

(iv) The individual student model states are used to create a “density matrix," which is 

then summed over the class. The off-diagonal elements of this matrix retain information 

about the confusions (probabilities of using different models) of individual students. (Bao 

& Redish, 2006)  

For each model state vector, a density matrix is created by taking the outer product of the 

model state vector with itself. The diagonal entries of the density matrix are simply the 

probabilities calculated in step (iii). The off-diagonal entries are non-zero only when a 

student has responses from more than one category of proof scheme. Thus, when a student is 

inconsistent, those inconsistencies are preserved by the off-diagonal entries of the matrix. 

To study a large number of data points, the density matrices will be averaged together: 

that is, the entries in each position are added together and divided by the total number of data 

points. Bao and Redish refer to the resulting matrix as the class density matrix. 

(v) The eigenvalues and eigenvectors of the class density matrix give information not 

only how many students got correct answers, but about the level of confusion in the state 

of the class's knowledge. (Bao & Redish, 2006) 

The class density matrix contains information on the students' responses to the questionnaire. 

An eigenvalue decomposition allows for trends in the data to be identified. In this way, the 

eigenvalue decomposition allows for information about the class as a whole to be extracted 

from the data. That is, the community-level proof scheme held by the class can be identified. 

 

Data and Results 

Our study collected data at the beginning (pre-instruction) and at the end (post-

instruction) of the Fall 2012 semester in a Transition to Proofs class. We used a multiple 

choice questionnaire instrument developed by Stylianou and Blanton (in press) to collect data 

from students in order to identify the proof schemes held in this introductory proof-writing 

class. A total of 38 students participated in both the pre- and post-instruction surveys. 

 

Tables 1 and 2, below, present the class density matrix and eigenvalues/vectors derived 

from model analysis. Table 1 compares the pre- and post-instruction results derived from the 

questions asking which proof is the most rigorous; Table 2 compares those derived from the 



questions asking for the most explanatory proof. Not shown here are the results from 

questions asking for the proof closest to students’ approach. A discussion of each table 

follows. 

 
Pre-instruction: 

Class Density Matrix: 

 N-A E-V E-N D-N D-S 

None of the Above 0.0066 0.0000 0.0000 0.0066 0.0093 

Empirical-Visual 0.0000 0.0921 0.0273 0.0449 0.1004 

Empirical-Numeric 0.0000 0.0273 0.1645 0.0525 0.1219 

Deductive-Narrative 0.0066 0.0449 0.0525 0.1645 0.2023 

Deductive-Symbolic 0.0093 0.1004 0.1219 0.2023 0.5724 

 

Eigenvalues/vectors: 

     Eigenvalues 0.0062 0.0705 0.1310 0.0820 0.7102 

Associated Eigenvectors: 

None of the Above 0.9985 -0.0406 -0.0209 0.0261 0.0151 

Empirical-Visual 0.0285 0.9444 -0.0057 0.2733 0.1803 

Empirical-Numeric 0.0168 -0.0271 0.9689 -0.0467 0.2409 

Deductive-Narrative -0.0425 -0.3208 -0.0569 0.8712 0.3648 

Deductive-Symbolic -0.0099 -0.0523 -0.2399 -0.4044 0.8810 

 

Post-instruction: 

Class Density Matrix: 

 N-A E-V E-N D-N D-S 

None of the Above 0.0192 0.0128 0.0091 0.0128 0.0155 

Empirical-Visual 0.0128 0.0449 0.0356 0.0245 0.0219 

Empirical-Numeric 0.0091 0.0356 0.1154 0.0091 0.0175 

Deductive-Narrative 0.0128 0.0245 0.0091 0.1603 0.2073 

Deductive-Symbolic 0.0155 0.0219 0.0175 0.2073 0.6346 

 

Eigenvalues/vectors: 

     Eigenvalues 0.0134 0.0294 0.1318 0.0847 0.7150 

Associated Eigenvectors: 

None of the Above 0.8877 0.4356 0.1184 0.0863 0.0286 

Empirical-Visual -0.4531 0.7831 0.3966 0.1488 0.0458 

Empirical-Numeric 0.0806 -0.3552 0.8906 -0.2699 0.0357 

Deductive-Narrative 0.0097 -0.2595 0.1502 0.8865 0.3522 

Deductive-Symbolic -0.0117 0.0597 -0.1139 -0.3340 0.9337 

Table 1: Class density matrices and eigenvalues/vectors derived for “most rigorous” questions (n=38) 

 

Looking at the results from the questions asking for the most mathematically rigorous 

proof, we see that even pre-instruction, students tend to choose deductive-symbolic 

responses. The diagonal entries of the class density matrix indicate that approximately 57% 

of the responses are in the deductive-symbolic category, 16% are in each of the deductive-

narrative and empirical-numeric category, and 9% in the empirical-visual category. All of 

these percentages are easily obtained with traditional statistical methods, as well. The off-

diagonal entries show the level of student self-consistency, which cannot be easily obtained 



with traditional methods. Higher off-diagonal entries indicate that students tended to choose 

responses from both of those categories, and therefore lower levels of self-consistency. The 

pre-instruction class density matrix indicates relatively high off diagonal entries in the 

deductive-symbolic row, indicating that a fair number of students chose empirical-visual, 

empirical-numeric, and (especially) deductive-narrative responses in addition to the majority 

of deductive-symbolic responses. The post-instruction class density matrix, by contrast, 

indicates that the “overlap” between deductive-narrative and deductive-symbolic remains, 

whereas the overlap between deductive-symbolic and the empirical categories has all but 

disappeared. 

The eigenvector analysis paints a similar picture: in both pre-and post-instruction results, 

there is a dominant eigenvector, associated with an eigenvalue much larger than any of the 

others. Bao and Redish (2006) indicate that an eigenvalue of 0.8 or greater indicates a strong 

primary eigenvalue; this eigenvalue does not quite meet this threshold. Nonetheless, this 

eigenvector indicates that the primary model state held by the class has a strong tendency 

toward the deductive-symbolic, a weaker tendency toward the deductive-narrative, and weak 

tendencies toward the other models. The dominant eigenvector the post-instruction results has 

very weak tendencies toward the empirical models. 

 

 

 

 

 
Pre-instruction: 

Class Density Matrix: 

 N-A E-V E-N D-N D-S 

None of the Above 0.0197 0.0159 0.0225 0.0132 0.0000 

Empirical-Visual 0.0159 0.2500 0.1505 0.0871 0.0770 

Empirical-Numeric 0.0225 0.1505 0.2368 0.0476 0.0300 

Deductive-Narrative 0.0132 0.0871 0.0476 0.1645 0.1305 

Deductive-Symbolic 0.0000 0.0770 0.0300 0.1305 0.3289 
 

Eigenvalues/vectors: 

     Eigenvalues 0.0163 0.2945 0.0954 0.0772 0.5165 

Associated Eigenvectors: 

None of the Above 0.9870 0.0612 -0.0146 0.1395 0.0481 

Empirical-Visual 0.0212 0.4077 -0.4586 -0.5662 0.5500 

Empirical-Numeric -0.0973 0.5741 0.5931 0.3494 0.4325 

Deductive-Narrative -0.1146 -0.1931 -0.5428 0.6966 0.4121 

Deductive-Symbolic 0.0519 -0.6806 0.3783 -0.2294 0.5817 

 
Post-instruction: 

Class Density Matrix: 

 N-A E-V E-N D-N D-S 

None of the Above 0.0064 0.0091 0.0064 0.0000 0.0000 

Empirical-Visual 0.0091 0.2179 0.0750 0.0467 0.0605 

Empirical-Numeric 0.0064 0.0750 0.1795 0.0586 0.0613 

Deductive-Narrative 0.0000 0.0467 0.0586 0.2051 0.1104 

Deductive-Symbolic 0.0000 0.0605 0.0613 0.1104 0.3654 



 

Eigenvalues/vectors: 

     Eigenvalues 0.0059 0.2254 0.1148 0.1469 0.4814 

Associated Eigenvectors: 

None of the Above 0.9988 0.0426 0.0090 -0.0197 0.0110 

Empirical-Visual -0.0379 0.6948 -0.4563 -0.4335 0.3460 

Empirical-Numeric -0.0274 0.4733 0.7975 0.1817 0.3259 

Deductive-Narrative 0.0131 0.0393 -0.3854 0.8135 0.4336 

Deductive-Symbolic 0.0070 -0.5384 0.0849 -0.3419 0.7655 
Table 2: Class density matrices and eigenvalues/vectors derived for “most explanatory” questions (n=38) 

 

 

The class density matrix for the “most explanatory” data shows a much more mixed 

picture. While the largest diagonal entry of the class density matrix is still in the deductive-

symbolic category, the other diagonal entries are almost as large. However, the off-diagonal 

entries are slightly smaller overall than they were for the “most rigorous” results, indicating a 

slightly higher level of self-consistency. The largest overlaps are between the two empirical 

categories and between the two deductive categories. 

The eigenvalue decompositions for the “most explanatory” class density matrices gives 

much weaker primary eigenvalues. The associated eigenvector shows a mix of model states, 

and is not so different from that associated with the next highest eigenvalue. Bao and Redish 

suggest that this kind of result indicates that the model states of the students are not very 

orthogonal, and that the eigenvalue decomposition is less valuable in this case. 

Conclusion 

The main claim of this paper is that the technique of model analysis can tell researchers 

about the self-consistency of student responses to Stylianou and Blanton’s proof scheme 

items. Our results from the “most rigorous” questions are encouraging: students entered the 

Transition to Proof class with a fairly self-consistent deductive model, and ended the course 

with an even stronger, more self-consistent, deductive model. The results from the “most 

explanatory” questions are less encouraging; even though the post-instruction results skew 

more toward the deductive models, there is not a consensus among the students that 

deductive models are the most explanatory.  

It is important to note that our data set is very limited, and that our results are based on a 

small sample size. However, our data does show that model analysis can differentiate 

between self-consistent data and non-self-consistent data. We believe that model analysis 

provides a valuable perspective on data collected using Stylianou and Blanton’s survey. We 

currently plan to apply this method to a more robust data set collected by Stylianou and 

Blanton. 
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