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This study explores in-service high school mathematics teachers’ conception of various 
forms of a complex number and the ways that they transition between different 
representations’ (algebraic and geometric) of these forms. Data were collected from three 
high school mathematics teachers via a  ninety- minute interview after they completed  
professional development on complex numbers. Results indicate that these teachers do not 
necessarily objectify exponential form of complex numbers and only conceptualized it at the 
operational level. On the other hand, two teachers were very comfortable with Cartesian 
form and showed process/object duality by translating between different representations of 
this form. It appeared that our participants’ ability to develop a dual conception of complex 
numbers was bound by their conceptualization of the various forms, which in turn was 
hindered by their representations of each form.  
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Introduction 
Understanding the complex number system, including performing arithmetic operations 

with complex numbers and representing complex numbers and their operations on the 
complex plane, is one of the Mathematics standards for high school highlighted in the 
Common Core State Standards Initiative (CCSSI, 2010 Appendix A, p. 60).  The document 
emphasizes the need for students to work with multiple representations of complex numbers 
(e.g., algebraic and geometric), and also recommends that students know how to represent 
complex numbers using rectangular and polar forms. In order for students to develop these 
notions, it is necessary for teachers to have deep content knowledge as well as knowledge 
about teaching the field of complex numbers. Deep content knowledge of the field of 
complex numbers entails knowing the multiple representations and forms, understanding the 
connections among them, translating between forms flexibly, and recognizing which 
representations and forms would be more suitable to use in a given task.  However, teachers’ 
understanding of complex numbers as well as the required pedagogical content knowledge 
has been understudied in mathematics education. Investigating this phenomenon is natural 
given that representations have played a significant role in the field of mathematics education 
(e.g., Eisner 2004; Janvier 1987; NCTM 2000) and the fact that multiple representations are 
an integral characteristic of complex numbers.  

The purpose of this report is to share our findings from a research study conducted with 
secondary mathematics teachers that investigates teachers’ content knowledge of complex 
numbers. In this paper we address the following research question: How do secondary 
mathematics teachers conceptualize complex numbers and their arithmetic operations? More 
specifically we explore teachers’ conception of different representations and forms of 
complex numbers. 

Literature Review 
Mathematics educators typically insist that learners should have access to multiple 

representations in order to reveal information or to illustrate solutions to problems or 
mathematical ideas. One reason for the emphasis on multiple representations is that 
“Different representations often illuminate different aspects of a complex concept or 



relationship” (NCTM, 2000, p.69). Research studies stress the importance of using multiple 
representations and indicate that learners develop mathematical reasoning and better 
conceptual understanding when they use various forms of representations (Cuoco & Curcio, 
2001). In other words, learners improve their ability to think mathematically by engaging 
with multiple representations.  

Although there is a vast amount of literature related to the role that representations play in 
the arithmetic of real numbers (Kilpatrick, Swafford, & Findell, 2001; Sowder, 1992), the 
same is not true for complex numbers. A handful of researchers (Conner et al., 2007; 
Danenhower, 2000; Nemirovsky et al., 2012; Panaoura, et al., 2006) have begun to explore 
students’ as well as experts’ (Soto-Johnson et al., 2011; Soto-Johnson et al., 2012) geometric 
interpretations of complex numbers and complex valued functions. In general, findings 
indicate that the experts effortlessly regarded complex numbers and their operations and 
complex valued functions as dynamic objects. However, similar results were not observed 
with students.  

Conner et al. (2007), found that prospective secondary mathematics teachers perceived 
multiplication of a real number by -1 as a reflection rather than a rotation of . This 
perception may be a result of focusing on the real number line rather than the entire complex 
plane and may have contributed to their inability to illustrate how multiplication by the 
complex number 𝑥  +   𝑦𝑖 results in a rotation and a dilation of the other factor. The preservice 
teachers also described complex numbers as a pair of real numbers rather than as a single 
number. This perspective may have facilitated their ability to provide a geometric 
interpretation of the addition of complex numbers using vectors or by decomposing the 
numbers into the real and imaginary components. Unfortunately, this perception about 
complex numbers does not lend itself to the geometric interpretation of complex number 
multiplication. Nemirovsky et al. (2012), however, offered methods for fostering a dynamic 
view of multiplication by i. As part of a teaching experiment with preservice secondary 
teachers, where the classroom floor served as the complex plane, the participants physically 
engaged in exploring the behavior of multiplying 2+ !

!
𝑖  by . Such perceptuo-motor activity 

provided a setting where the participants discovered and conceptualized the structural 
components behind complex number addition and multiplication.  

In another related study, Danenhower (2006) asked undergraduates to convert 
instantiations of the fraction!!!"

!!!"
 into Cartesian (𝑥 + 𝑦𝑖) or exponential (𝑟𝑒!") form. The 

participants tended to avoid the exponential form, especially if it required converting between 
polar and exponential forms due to their perceived weakness with 
trigonometric functions. Although the students easily worked with the Cartesian form, it was 
generally not the most efficient method to simplify the fraction. In many instances a 
geometric interpretation would have alleviated much of the computational effort, but the 
participants did not appear to draw on such an interpretation. Similar results were found by 
Panaoura et al. (2006), who investigated Greek high school students’ (N = 95) proficiency 
moving between algebraic and geometric representations of complex-valued equations and 
inequalities of the form . In general, the participants were more successful when 
explicitly asked to provide an algebraic representation of a given geometric figure, but this 
was not evident when the students were asked to solve a similar problem-solving task. This 
may suggest “a lack of flexibility in using the geometric approach effectively with different 
representations of complex numbers” (p. 700). 

While the research suggests that high school students and undergraduates tend to view i 
as a static object, struggle to provide geometric meaning to complex number arithmetic, and 
fail to recognize which form is more appropriate for a given situation, Soto-Johnson et al. 
(2011) and Soto-Johnson et al. (2012) indicates that experts do not have such difficulty. In 
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attending to given tasks, the experts easily recognized which representation was better suited 
for each task. It was “natural” for them to view the complex numbers as vectors for addition, 
to represent them in Cartesian form for addition and polar form for multiplication, and to 
express z as an operator and w as the operand for multiplication. The experts easily connected 
algebraic and geometric representations and navigated between representations and forms. 
Furthermore, they recognized which form and which representation were most appropriate 
for more advanced tasks. This flexibility allowed them to provide responses involving 
metaphors, which highlight the dynamic aspects of complex numbers.  

Theoretical Perspective 
In an effort to explore teachers’ conception of complex numbers, we incorporated Sfard’s 

(1991) duality principle of conception for the different representations and forms of complex 
numbers. Sfard defines conception as “the whole cluster of internal representations and 
associations evoked by the concept [or notion]” (1991 p.3), and describes two types of 
conception: operational and structural. Structural conception refers to treating or seeing 
mathematical notions as abstract objects. An example includes perceiving a complex number 
as a number- a fully-fledged mathematical object on which processes can be performed. 
Operational conception focuses on the “processes, algorithms and actions” (p.4) performed 
on mathematical notions. For example, recognizing i as the square root of negative one. 
When there is no evidence of conception, Sfard (1991) classifies this as the pre-conceptual 
stage. The two conceptions, operational and structural, of the same notion complement each 
other and foster a dual conception.  

In the development of a mathematical notion, operational conception precedes structural 
and three stages of development, interiorization, condensation and reification, illustrate the 
transition from process to object. During the stage of interiorization the learner skillfully 
performs processes on developed mathematical notions. At the stage of condensation the 
learner can perform many processes and is capable of viewing them as a whole without going 
into details of each step. As learners progress in this stage, they begin to manifest more 
flexibility in translating between different representations of the same notion. The 
progression continues until the learner starts to recognize the object as a new entity or is able 
to distinguish the object from the processes. Reification is the stage when the learner can 
extract the object from processes. In contrast to the previous stages, the shift to reification can 
be instantaneous. At this stage different representations of the same notion merge together.  

In our study, our participants were introduced to the Cartesian, polar, and exponential 
forms of a complex number with algebraic and geometric representations for each form. We 
incorporated Sfard’s (1991) duality principle as part of the professional development 
highlighting the connection between different representations to provide an opportunity for 
the teachers to condense and possibly reify the different forms of complex numbers. Sfard 
highlights the importance of such practices and warns “As long as the computational 
processes have been presented in the purely operational way, they could not be squeezed into 
static abstract entities, thus were not susceptible of being treated as objects.” (p.24) We 
examined the three teachers’ dual conception of each form to capture their overall conception 
of complex numbers. In our analysis, we explored participants’ use of multiple 
representations with various forms in order to distinguish between their operational and 
structural conception of a form.  

Methods 
As part of this study, in-service high school mathematics teachers engaged in a three-day 

professional development (PD) program intended to strengthen their content knowledge of 
complex numbers. Besides introducing the participants to the three forms of a complex 
number, we also illustrated various representations for each form. As part of the PD the 
teachers engaged in discussions emphasizing the connection between these various forms, 



shared their perceptions of complex number arithmetic, discovered dynamic representations 
of the arithmetic of complex numbers using GeoGebra, compared real and complex number 
arithmetic, and provided algebraic and geometric explanations for “complex sentences.”  

Three teachers, Melissa, Aaron, and Troy (all pseudonyms), participated in an individual 
90-minute task-based interview after the completion of the PD. The goal of the interview was 
to gain understanding of the ways in which the teachers used different representations in their 
mathematical reasoning of complex numbers with novel tasks presented in various forms. At 
the time of our study Melissa was in her first year as a full-time teacher and taught algebra II 
and geometry; Aaron taught geometry and was in his second year of teaching; and Troy, who 
was in his 21st year of teaching, taught IB mathematics. Both Aaron and Troy had Masters 
degrees in mathematics education. These interviews served as our primary source of data; 
other data included video-recording of each of the PD days and teachers’ in-class work, 
which was used for triangulation purposes. All three interviews were fully transcribed and 
each member of the research team used deductive analysis techniques (Erickson, 2006) to 
code the teacher’s responses. This entailed cataloging how and when the participants used 
various representations for each form. This allowed us to provide evidence regarding the dual 
conceptualization of a given form. We refined our results after sharing and discussing our 
individual analysis, which was followed with a cross-case analysis.  

Results 
Our analysis suggests that none of the interview participants (Melissa, Aaron, and Troy) 

had a dual conceptualization of a complex number, although each teacher articulated 
reasoning that conveyed structural conceptualization for some forms of complex numbers. In 
other words, our participants’ conceptualization of a complex number tended to be bound by 
their conceptualization of each form. 

 Overall, Melissa had an operational conception of 𝑖, while evidence suggests both Aaron 
and Troy had a dual conception of 𝑖. During the interview Melissa referred to 𝑖 as the square 
root of −1 multiple times and utilized the fact that 𝑖! is equal to −1 in her explanations of her 
solutions. Even though she recognized and used different representations of  𝑖, she did not 
flexibly connect the various representations. For example, when she wanted to represent 𝑖 as 
a point on the Argand plane, she was hesitant whether it was the point (0,1)  and asked the 
interviewer if her point was correct. After receiving confirmation she was not hesitant 
anymore. Throughout the remainder of the interview she translated back and forth between a 
point representation and algebraic one as she performed manipulations with 𝑖.  We 
interpreted Melissa’s such actions as her trying to condense the form 𝑖 by moving between 
representations. However, we did not find any evidence where she reified this particular 
form. For these reasons we believe that Melissa had an operational conception of 𝑖 and 
appeared to be at the condensation stage. On the other hand, while Aaron and Troy both 
stated and used the fact that 𝑖  was the square root of -1, they both also recognized and utilized 
different representations of 𝑖  flexibly in their explanations and solutions during the interview. 

Similarly, for the Cartesian form Melissa had an operational conception, while Aaron and 
Troy had a dual conception.  When asked to describe how she thinks of a complex number, 
Melissa replied with “Well I guess just the letter 𝑖 and anything that correlates with having  𝑖, 
so like 𝑖 + 1  and multiples of 𝑖 and all that…” She used this description of a complex number 
throughout the interview.  Melissa relayed a complex number in Cartesian form as an 
algebraic process performed on 𝑖, which is evidence of an operational conception of this 
form.  In contrast, the evidence suggests that a complex number in the form 𝑎 + 𝑏𝑖 is an 
object for both Troy and Aaron.  At one point in the interview, Aaron stated “So if you’re 
telling me 𝑧 is complex figure, 𝑧 is going to be in the form 𝑎 + 𝑏𝑖,” and a similar instance 
occurred with Troy. Such instances were coded as a structural conception of this form, since 
the participants used this form as an object. The reason for such coding decisions were from 



Sfard’s framework in which she suggests that “when tackling a genuinely complex problem, 
we do not always get far if we start with concrete operations; more often than not it would be 
better to turn first to the structural version of our concepts.” (p.27) Moreover, both Aaron and 
Troy were able to consider multiple representations of the Cartesian form simultaneously.  
For example, while working on an interview task, they each declared that multiplying a 
complex number by 𝑖 took the point (𝑎, 𝑏) to the point (−𝑏,𝑎).  

During the interview, Melissa was not able to work effectively with the exponential form. 

For example, when asked to explain why  was true, Melissa responded that 

her solution method was “comparing both sides of the equals [sign]”. She continued to 
articulate how she would simply compare the symbols and use the “law of exponents”, which 
she had just covered in class. Such a response led us to believe that her conceptualization of 
the exponential form was at the pre-conceptual level. On the other hand, both Troy and Aaron 
appeared to possess an operational conceptualization with the algebraic representation of the 
exponential form. This was evidenced with their quick response that the statement was true 
due to the law of exponents. Furthermore, Troy demonstrated a pre-conceptual level of the 
geometric representation for exponential form (a polar vector representation of exponential 
form was considered to be a geometric representation of this form), while Aaron provided 
evidence of a pseudostructural conceptualization for the geometric representation of the 
exponential form. These conclusions are based on the fact that Troy struggled to recall the 
meaning of the exponential form and his attempt to divide vectors was problematic, which 
seemed to suggest he possessed a preconceptual understanding of the exponential form. 
Similarly, Aaron viewed the complex numbers as vectors as evidenced in his statement, “Or 
you can think of it as vector 1 being divided by vector 2. So vector 2 is acting on vector 1.” 
The fact that Aaron perceived the task as division of vectors, which does not make 
mathematical sense, appeared to hinder his ability to provide a viable geometric 
representation illustrating his algebraic explanation. Sfard (1992) provides a special term for 
such a case, pseudostructural conception, meaning that a person has both operational and 
structural conceptualization at certain instances and neither at other cases, and states “such 
tendency may indicate a semantically debased conception.” (p.75) This led us to believe that 
Aaron had a pseudostructural conception of the geometric representation of the exponential 
form of complex numbers.    

Conclusion 
Our results indicate that the participants did not have dual conception of complex 

numbers, however developed duality of some forms of complex numbers. Even though 
teachers were provided opportunities during PD to condense and reify complex numbers 
structurally by practicing using various forms and translating between them using various 
representations, such practices were only observed in certain forms of complex numbers. As 
Sfard (1991) states “The reification, which brings relational understanding, is difficult to 
achieve, it requires much effort […].” (p.33). It is quite possible our participants needed more 
time to reify the complex numbers. 

Our experiences make us believe that universities need to examine how they train 
prospective teachers and offer PD for inservice teachers regarding complex numbers. We are 
not proposing that preservice teachers complete a complex variables course, but room must 
be made in the curriculum for prospective teachers to develop a dual conceptualization of 
complex numbers. For example, such exposure could exist in methods and technology 
courses designed specifically for prospective secondary mathematics teachers. In the methods 
course, opportunities could be provided for the prospective teachers to review high school 
texts in order to obtain a better idea of where and how complex numbers emerge in the 
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curriculum. A technology course is another excellent venue where both preservice and 
inservice teachers can learn about complex numbers using software such as  Geometer’s 
Sketchpad or GeoGebra to explore the behavior of complex-valued functions. Such practices 
may reinforce the progress towards a dual conceptualization of complex numbers.  

The recommendations put forth by the Common Core State Standards for high school 
students to understand the structure and properties of complex numbers as well as their 
arithmetic operations will hopefully transform how complex numbers are taught in high 
school level. But such a transformation will also require assistance from schools, universities, 
and assessment agencies. More research investigating both students and teachers’ 
conceptualization of complex numbers and complex valued functions will help us to develop 
better teaching practices in this content domain. 
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