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Despite  the  importance  of  intuition and  analysis in  proof  tasks,  students  have  various  
difficulties with both types of reasoning.  Such difficulties  may be attributed to insufficient  
intuition, logical reasoning skills, or concept images.  However, dual-process theory asserts  
that intuition can form inaccurate or incomplete representations of tasks based on systematic  
errors  before  analysis can  respond.   Thus,  students'  difficulties  may be  attributed  to  
systematic intuitive errors rather than inadequate intuitive or analytical reasoning.  In this  
study,  I  conducted  task-based  interviews  with  four  undergraduate  and  one  graduate  
mathematics major in which they completed prove-or-disprove tasks.  In this paper, I discuss  
the systematic intuitive errors committed by these students on a monotonicity task.  These  
errors led all five students to believe incorrectly that the statement in the task was true.  
Furthermore,  each  student  engaged  in  correct  mathematical  reasoning  guided  by their  
incorrect intuitive representations. 
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Intuition and analysis are fundamental components of mathematics that play key roles in 
producing  proofs  and  counterexamples  (Fischbein,  1987;  Tall,  1991;  Wilder,  1967). 
However, undergraduate students have a multitude of difficulties with both types of thinking 
that  inhibit  effective  reasoning  on  proof  tasks.   Intuitive  difficulties  include  (a)  lack  of 
intuition  (Moore,  1994)  and  (b)  narrow intuitions  based  on  examples  and  visualizations 
(Moore, 1994; Raman, 2003).  Analytical difficulties include (a) limited  logical  reasoning 
skills (Harel  & Sowder,  2007;  Selden & Selden,  1987) and (b)  incomplete  or inaccurate 
concept images (Tall & Vinner, 1981).  Furthermore, students have difficulties connecting 
their  intuitive  understandings  to  analytical  arguments.   Students'  intuition may  not  lead 
directly to a proof or counterexample, or students may not recognize the relationship between 
their intuition  and a proof or counterexample (Raman, 2003).  This may result in students' 
inability to understand formal mathematical statements or begin a proof (Moore, 1994).  

Dual-process theories of reasoning assert that intuition and analysis correspond to distinct 
types  of cognitive  processing,  each with specified  characteristics  and roles (Evans,  2006, 
2008,  2010;  Kahneman,  2002).  Although  dual-process  theories  result  from cognitive 
psychology research, Leron and Hazzan (2006, 2009) have suggested using them to analyze 
recurring errors in mathematical tasks.  Dual-process theories suggest that certain systematic 
errors that recur across tasks and participants can be attributed to flawed intuitive reasoning 
that steals the show before analytical reasoning even takes the stage.    

Preliminary results from a study in which students decided whether to prove or disprove a 
mathematical  assertion  and constructed  corresponding proofs or  counterexamples  indicate 
that students’ errors may be attributed to systematic intuitive errors.  Furthermore, students’ 
analytical reasoning was incorrect only because it was based on these errors.           

Theoretical Framework
Dual-process theory asserts that reasoning uses two distinct types of cognitive processes – 

intuitive and analytical (Evans, 2008).  Although these processes collaborate, intuition often 
dominates and influences analysis in unproductive ways (Evans, 2010).  

Intuition is  often  quick,  automatic,  requires  little  cognitive  effort,  and  is  developed 
through experience (Evans, 2008; Fischbein, 1987; Wilder, 1967).  The automatic operation 



of intuition frequently provides a default response to a task (Evans, 2010; Wilder, 1967) that 
takes into account prior knowledge and beliefs,  task features,  and the current goal of the 
reasoning to create a representation of the task  (Evans, 2006).  However, the representation 
may be distorted or deficient  due to systematic  accessibility  errors  of  intuitive  reasoning 
(Evans, 2010; Kahneman, 2002).  Accessibility is the ease with which certain knowledge is 
evoked or  certain  task  features  are  perceived  (Kahneman,  2002).   Two key accessibility 
errors involve (a) attribute substitution, and (b) knowledge and task feature relevance.

Attribute substitution errors occur when a more easily accessible attribute is substituted in 
a task for a less easily accessible attribute (Kahneman, 2002).  Participants often intuitively 
notice  similarities  between  the  current  task  and  previously  encountered  tasks,  substitute 
accessible attributes for less accessible ones based on these similarities, and unknowingly 
change the given task to a similar more accessible task (Kahneman & Frederick, 2002).

Relevance errors occur when knowledge and task features are deemed irrelevant because 
they  are  not  readily  accessible  (Evans,  2008,  2010;  Kahneman,  2002).   When  forming 
intuitive task representations, (a)  less  accessible relevant knowledge is often not  applied to 
the task (Weber, 2001), (b) less accessible relevant task features are often overlooked, and (c) 
more accessible irrelevant task features are often overemphasized (Evans, 2008).

Analysis is frequently slow, deliberate, requires much cognitive effort, and is developed 
through reflective and logical thinking (Evans, 2010).  Analytical reasoning is often brought 
into action  in response to  an intuitive  representation  of a  task  (Evans,  2010;  Kahneman, 
2002).  However, the power of intuition may result in analytical reasoning being (a) bound to 
a biased or incomplete intuitive representation or (b) invoked solely to justify an intuitive 
representation,  thus  failing  to  consider  alternative  representations  of  a  task  (Thompson, 
2009).  Thus, analytical reasoning may not be able to overcome faulty intuitive reasoning.   

Method of Inquiry
The participants  in this study were four undergraduate mathematics majors, called Ann, 

Brian, Chris, and Dave, in transition-to-proof mathematics courses at two private liberal arts 
colleges in Ohio and West Virginia and one graduate student in mathematics, called Ben, at a 
public university in Ohio.  I conducted individual, semistructured, task-based interviews with 
each participant (Goldin, 2000).  Each interview was audio-recorded and transcribed.  During 
the interview, participants worked on three prove-or-disprove tasks, including the following:

Monotonicity task: Definitions: A function  f: ℝ→ℝ is said to be  increasing if and 
only if for all x1 , x2∈ℝ , (x1 < x2 implies f(x1) <  f(x2)).  Similarly, a function f: ℝ→ℝ

is said to be decreasing if and only if for all x1 , x2∈ℝ , (x1 < x2 implies f(x1) > f(x2)). 
Prove or disprove: If f: ℝ→ℝ and g: ℝ→ℝ are decreasing on an interval I, then the 
composite function f ∘ g is increasing on I.     

I instructed the students to think aloud during the tasks and to clarify or expand on their 
thinking as necessary.  Upon completion of the tasks, I asked the students about difficulties 
they had with the tasks and general strategies they used for prove-or-disprove tasks. 

Analysis  included  the  following:  (a)  categorizing  students'  reasoning  as  intuitive  or 
analytical, (b) identifying errors in students' reasoning, (c) classifying errors as intuitive or 
analytical,  (d) categorizing intuitive errors as relevance or attribute substitution errors, (e) 
determining the impact of intuitive errors on analytical reasoning.

Preliminary Results
Each student  believed  that  the  false  statement  in  the monotonicity  task  was true  and 

attempted to prove it.   Ann and Brian each committed an attribute substitution error, and 
Chris, Dave, and Ben each committed a relevance error. 



Ann  and  Brian  made attribute  substitution  errors  that  prohibited  them  from  making 
significant  progress  on  the  task.   Ann  substituted  the  similar  concept  of  negative  times 
negative equals positive for the task concept of decreasing composed with decreasing equals  
increasing.  Brian substituted the incorrect concept  odd times odd equals even in place of 
decreasing  composed  with  decreasing  equals  increasing.  As  an  example  of  attribute 
substitution, consider Ann's intuitive response to this task: 

Well  my  first  thought  is  just  simply  that  if  the  two  functions  f and  g are  both 
decreasing, then at that point, then both of the slopes would have to be negative, or 
something in there would have to be negative,  which,  and then I go to the simple 
[idea] that a negative times a negative is a positive.  That would be increasing.  

Ann changed the given task, replacing it with a similar and more accessible task.  She then 
illustrated her idea with an example in which she composed two negative functions resulting 
in a positive function.  Thus, her analytical reasoning supported her intuition.  However, she 
was unable to begin a proof of the task statement.      

Chris, Dave, and Ben made relevance errors that led them to construct false proofs for the 
task.  They each ignored the interval restriction in the task, responding as if the task was to 
prove  or  disprove  the  following:  If  f: ℝ→ℝ and  g: ℝ→ℝ are  decreasing,  then  the 
composite function f ∘ g is increasing.  The proofs that Chris, Dave, and Ben constructed 
were correct proofs for this similar, more accessible task.  Each student produced essentially 
the same false proof of the task, for which Ben's proof is representative:

Suppose x1 < x2.  Then g decreasing implies  g(x1)  > g(x2).  Now apply f  to  g(x1) and 
g(x2).   g(x2)  < g(x1) → f(g(x2))  > f(g(x1)).  Started with  x1 < x2, conclude  f(g(x1))  < 
f(g(x2)).  Therefore f ∘ g is increasing. 

Each student focused on the basic idea that a decreasing function composed with a decreasing 
function  would  result  in  an  increasing  function.   There  was  no  spoken  or  written 
consideration of the interval restriction by any of these three students.      

Discussion
Each  student  demonstrated  some  intuition  on  the  monotonicity  task  and  created  a 

deficient intuitive representation of the task based on a systematic intuitive error.  This led 
each student incorrectly to judge the statement to be true.  The students' subsequent work was 
based  on  this  ill-formed intuitive  representation,  but  their  analytical  reasoning  was 
mathematically  correct.   Ann and Brian constructed  examples  to  help  them support their 
intuitive representations and correctly interpreted the information in the examples,  but were 
unable to move beyond examples to more general representations of the task.  Chris, Dave, 
and Ben constructed correct proofs to a similar, yet different, mathematical assertion.  

These students demonstrated intuition, valid mathematical reasoning, and use of relevant 
mathematical knowledge on this task.  Furthermore, these students connected their intuition 
to their analytical work on the task.  So why did they still all think this false statement was 
true  and  back  up  their  claim  with  legitimate  mathematical  work?   These  students  were 
victims of the quick, automatic processing of their intuition which developed an inaccurate or 
incomplete representation of the task for their analytical reasoning to process.  Due to the 
power of these intuitive errors,  the  students employed  analysis  to support them rather than 
correct them.  Thus, the students' intuition had already warped the task before their analytical 
reasoning had the chance to respond.        

Questions for the Audience
Does  the  dual-process  theory  perspective  have  useful  practical  implications?   Is  the 

monotonicity  task  a  “trick”  question?   Would  a  larger  scale  comparison  study  with 
undergraduate and graduate students be a worthwhile step to further this work?  
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