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Abstract 

 
In this report we present the commonly identified error patterns and students’ misconceptions 
about vectors, vector operations, orthogonality, and linear combinations. Twenty three 
freshmen students participated in this study. The participants were non-mathematics majors 
pursuing liberal arts degrees. The main research question was: What misconceptions about 
vector algebra were still prevalent after the students completed a freshmen-level linear 
algebra course? We used qualitative data in the form of artifacts and students’ work samples 
to identify, classify, and describe students’ mathematical errors. Seventy four percent of 
students in this study were unable to correctly solve a task involving vectors and vector 
operations. Two types of errors were commonly identified across the sample: a lack of 
students’ understanding about vector operations and projections, and a lack of 
understanding (or distinction) between vectors and scalars. Final results and conclusions 
include research suggestions and practitioner-based implications for teaching linear algebra 
in high school and college. 

Key words: Linear algebra, vectors, and students’ misconceptions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
___________________________________________________________________________ 
The researchers gratefully acknowledge the work and contributions of Tyler Gaspich and the 
willingness of the course instructor and his students to participate in this study. Without their 
participation this research project would not have been possible.  
  



Background 
Research suggests that students transitioning from computation-heavy courses to 

more proof-oriented mathematics courses have a lot of difficulties, especially in topics of 
linear algebra (Rasmussen et.al, 2010). Linear algebra serves as the bridge between many 
mathematics domains due to its content and significant connections between lower and upper 
level mathematics. Common Core Standards (CCSS) has placed a strong emphasis on 
students’ learning of linear algebra topics such as vectors and matrices during their high 
school years to help students to better transition into business algebra, linear algebra, and 
calculus in college (CCSS, 2010).  

However, the issue of conceptualizing abstract ways of reasoning is becoming 
increasingly problematic for most of the students (Rasmussen et. al. 2010; Hillel & Dreyfus 
2005; Stewart & Thomas, 2009; Tabaghi 2010). Research studies have strongly suggested 
that students are able to grasp and perform the computational aspects; however, they have 
trouble understanding the conceptual notions and the mathematical ideas behind their 
computations (Stewart & Thomas, 2009, p. 951; Gueudet-Chartier, 2004; Tall, 2004). With 
linear algebra becoming a strong emphasis of high school mathematics curriculum (CCSS, 
2010), consequently affecting many high school students and freshmen entering college, 
more research is needed to better understand students’ difficulties and mathematical 
misconceptions in linear algebra. 

 
Theoretical Perspectives 

Whether it is due to a lack of visual representation or the task of generalizing familiar 
concepts, dealing with forms of abstraction and proof appears to be very difficult for students 
(Rasmussen et. al p. 1577, Hillel & Dreyfus p.181). Stewart and Thomas (2009) studied a 
group of undergraduate students, who struggled with vector addition and spanning, as well as 
not being able to distinguish between linear combinations and linear equations. The authors 
concluded that perhaps the teaching methods of linear algebra need to be re-focused to 
emphasize the “embodied world, symbolic world, and formal world” of mathematics (Stewart 
and Thomas, 2009, p. 956). These three worlds were initially introduced by David Tall 
(2008), who defined them as: the conceptual-embodied world - based on perception, action, 
and thought, the proceptual-symbolic world – based on calculation and algebraic 
manipulation, and the axiomatic-formal world – based on set-theoretic concept definitions 
and mathematical proof (Tall, 2008). 

Tabaghi (2010) suggests that students’ transition between operational thinking to 
structural thinking is critical. However, teaching this transition is difficult considering most 
mathematics instruction up to that point focuses on procedures and algorithms, leading many 
students to mainly develop operational thinking. Tabaghi defined operational thinking as 
“conceiving a mathematical entity as a product of a certain process” while structural thinking 
involves the conception of mathematical entity as an object (p. 1507).  Tabaghi (2010) found 
that most of her students described linear transformation only as vectors (operational 
thinking). She explained that “typically, students are unable to visually represent the concept 
or do not adequately picture all the possibilities” (Tabaghi, 2010, p. 1507).  

In contrast, Harel (1989) found that his students had difficulties in proof because they 
held a limited point of view about what constitutes justification and evidence. Harel (1997) 
claimed that students do not develop adequate concept images for the definitions provided by 
teachers or textbooks. Harel explained that, most textbooks use “algebraic embodiments 
rather than geometric ones”, which are in part problematic due to their puzzling notion of 
“unfamiliar algebraic systems” (Harel, 1997, p. 56) 

In this study we focused on students’ error patterns and mathematical misconceptions 
related to vectors, vector operations and dilations, orthogonality, and linear combinations. 



The main research question we sought to investigate was: What misconceptions about vector 
algebra are still prevalent after the students complete a linear algebra course? We collected 
students’ written work samples from summative assessment at the end of the course to be 
able to classify, describe, and document students’ error patterns and mathematical 
misconceptions related to these topics. Based on the findings of this research, we provided 
research suggestions and practitioner-based implications for high school teachers and 
educators, who are working to help students improve their experiences learning linear 
algebra. 

 
Research Methodology 

We used phenomenography as the research methodology for this study, which 
investigates the qualitatively different ways in which people think about something (Marton, 
1981; 1986). Qualitative data collection methods were used to capture students’ thinking and 
understanding of concepts of vector algebra. We collected hand-written student work samples 
and artifacts focusing on constructive response questions that required students to provide 
answers as well as explanations to their answers. The goal was to collect data in such a way 
that the researchers imposed a minimal amount of mathematical influence or instructional 
bias on the participants and their data. The researchers were not the instructors of this course 
nor were they familiar with the students enrolled in the course.  

 
Methods & Procedures 

To ensure better-quality instruction, careful consideration was given to the selection 
of the linear algebra course and its instructor. The instructor of the selected course was a 
senior professor of mathematics with expertise in linear algebra, who had taught the course 
for many years and was the author of the course textbook.  
 
Sample & Context 

The participants of this study were twenty three first-year college students enrolled in 
a Linear Methods course in a small urban private liberal arts college. Linear Methods is a 
variation of a traditional Linear Algebra course. This course was developed in response to a 
new curriculum for incoming college freshmen. The student participants were liberal arts 
majors (e.g., business, social sciences); mathematics and science majors do not take this 
course. As a requirement, students must take one mathematics “beauty” course, that is not 
computation-heavy (such as calculus), introducing students to a more elegant aspect of 
mathematics. All the “beauty” courses are required to include explorations of basic concepts 
of logic and methods of proof.  These types of courses are considered tamer versions of their 
advanced counterparts, such as: Number Theory, Differential Geometry, Topology, and 
Abstract Algebra. As part of the course, our participants touched upon some essential topics 
of linear algebra without delving far into the theory. The class met for a total of fifty minutes 
three times per week for eleven weeks. It was taught by a senior professor of mathematics in 
a lecture format with very little small group student interactions. The instructor encouraged 
students to attend supplementary review sessions organized and taught by the teaching 
assistant two times per week. 
 
Linear Methods Course 

In Linear Methods students studied several linear algebra topics, such as: vector 
manipulations, scalar multiplication and vector addition, systems of linear equations, inverse 
matrices, and linear transformations (e.g., rotations and reflections over lines). The instructor 
taught these topics mostly from a deductive perspective by concentrating students’ attention 
and learning on the definitions and formal structures. For example, the curriculum is 



organized to sequence matrix addition before introducing vectors, and later in the course 
defines a vector as a special type of matrix.  The curriculum includes very few opportunities 
for students to explore the reasons for why two matrices (and ultimately vectors) can be 
added or multiplied together, while focusing largely on the mathematical procedures and 
examples for students to practice mathematical computations of matrix (and vector) 
manipulations. Over the past few years, however, the instructor had expressed concerns that 
the students in this course are fundamentally struggling with graphing exercises, especially 
the principles of vector addition and scalar multiplication. He also indicated that the students 
lack understanding and do not see the connections between matrices and linear systems.  
 
Mathematical Task  

The following task was the main question of our students’ data and analyses: 
Express the vector ],,[ 321 xxxx =  as a sum of two vectors, one of which is parallel 
to ],,[ 321 yyyy = , and second is orthogonal to y . Use fractions instead of decimals. 

 
This task required students to present their work and demonstrate an understanding of 

six overarching mathematical concepts related to vectors:  
• Finding a parallel vector to a given vector (i.e. shift of a vector) 
• Finding a perpendicular vector to a given vector (i.e. dilation of a vector, the 

projection of a vector onto another vector) 
• Vector multiplication by a scalar; 
• Finding the length of a vector; 
• Vector addition and subtraction;  
• Representing vectors as a sum of two vectors; 

 
We selected students’ work from this task because it included multiple parts and 

necessitated students to illustrate their answers, which allowed us to thoroughly analyze their 
work and identify mathematical error patterns. This task was given to the students at the end 
of the course, as part of their final exam. Thus, students had a period of one semester to 
confront their misunderstandings of linear algebra by asking either the instructor or the 
teaching assistant assigned to the course.  
 
Data Analyses 

Our goal was to investigate student’s responses, specifically their errors and 
misconceptions related to vector algebra. We coded students work for error patterns within 
the six abovementioned categories. We then analyzed the coded data for common themes of 
error patterns and misconceptions. We focused on the mathematical errors behind the 
solutions, rather than students’ processes of obtaining the solution. We generally noted the 
arithmetic and computational errors in our analyses as well (i.e. a student multiplied two 
fractions by finding a common denominator), however we didn’t focus our analyses on these 
types of errors. We also did not analyze (nor did we collect) the course grades of these 
students.   

 
Findings  

 Only five students (out of 23 total) were able to correctly answer the question. One 
student did not provide a response to the question. The remaining seventeen students 
answered the question exhibiting two types of common misconceptions related to: the 
reasoning and spatial sense about vector operations and projections, and the understanding 
(or distinction) between vectors and scalars.  



 
Lack of Understanding (or Distinction) Between Vectors and Scalars 

Thirty five percent of students (8 out of 23) demonstrated fundamental 
misunderstandings of the meaning of vectors and scalars, and failed to differentiate between 
vectors and scalars. These errors were especially evident in students’ operations with vectors 
- students confused vectors with scalars and performed arithmetic operations, often treating 
them as numbers. Many students in this category also have mistaken the vectors for scalars 
and used algebraic operations with them to obtain either vectors or scalars as a result.  

For example, in Figure 1, Bobby computed a difference between a scalar and a vector 
and got a vector as a result.  

 
Figure 1. Bobby’s Misconception: Scalar – Vector = Vector 

 
Other errors were also evident in Bobby’s work, including: 6=y ; assumption that 

vector = scalar; incorrect reasoning about the projection of vectors; subtraction of fractions 
from whole numbers; calculation errors (136 in the numerator); and the use of square roots.   

In contrast, Figure 2 illustrates the work of Casey, who subtracted a scalar from a 
vector and got a scalar as the result.  

 
Figure 2. Casey’s Misconception: Vector – Scalar = Scalar 

 
Similarly, Casey also used incorrect reasoning about: projection of vectors; 

assumption that vector = scalar; and a false interpretation for the dot product of a vector and a 
scalar.  

Indeed, the dot products of vectors and scalars have been common error patterns for 
most of our students’ work samples. For example, Harper interpreted the dot product of a 
scalar and a vector as a vector. Harper, another student, also incorrectly assumed that vector = 
scalar, and used the square roots in the solution of this problem (see Figure 3). 

  



Figure 3. Harper’s Misconception: Scalar · Vector = Scalar 

 
The last work sample (Figure 4) in this category that we chose was the work of 

Hayden. This student demonstrated many difficulties and misconceptions.   
Figure 4. Hayden’s Misconception: Vector · Vector = Vector 

 
It was evident that Hayden struggled with simple arithmetic computations 

(multiplication of fractions by whole numbers), in addition to the false assumption that vector 
= scalar, incorrect reasoning about parallel and perpendicular vectors, and calculating the 
result of a dot product of two vectors as a vector (Figure 4). 

 
Lack of Reasoning and Spatial Sense about Vector Orthogonality & Projections 
 Forty percent (9 out of 23) of students demonstrated limited understanding about the 
concept of parallel and perpendicular vectors. The common error was the fact that the 
students interpreted the vector projection as a scalar. These misconceptions were evident 
from the students’ work samples above; however, we present one more example to strongly 
emphasize these misconceptions (see Figure 5,where x [4, 12, 11] and y [5, -1, 2])  
 

Figure 5. Jordan’s Misconception: Parallel and Perpendicular Vectors 



 
 The results of these findings, also suggest that perhaps students used incorrect 
interpretation for the vector projections due to the lack of their understanding of the notation 
for vector projections. Another hypothesis is that students may have possibly confused the 
spatial orientation of the vector that they needed to project. Nonetheless, these errors 
demonstrate students’ fundamental misconceptions about vectors, orthogonality, and the 
meaning of vector projections.  
 

Discussion & Conclusion 
We wanted to stress the fact that the students in our sample were freshmen college 

students completing a “beauty” mathematics course in linear algebra designed to meet the 
general education program course requirement for non-mathematics majors. One of the 
aspects that stood out in the students’ work across the entire sample, however, was the fact 
that none of them used pictures to represent (or reason through) the solution to this task. As 
part of the recommendations for high school and entry-level college teaching of linear 
algebra, we would like to propose additional approaches that might be helpful for students’ 
learning, especially approaches emphasizing pictorial representation.  

Recent research strongly emphasizes the use of geometric approaches and 
representations in linear algebra. Gueudet-Chartier (2002) investigated students’ geometric 
intuition, “use of geometrical or figural models”, and its effect on students’ ability to find 
mathematical models and develop conceptual understanding.  The author suggested that 
mathematics instruction that focused on the use of drawings in general vector spaces was 
critical for his students; otherwise, the students were unable to find models and correct 
intuition to develop conceptual understanding of these topics (Gueudet-Chartier 2002; 2004).  

Similarly, Harel (1989) found that, in comparison to strictly algebra-taught students, 
the students, who engaged in geometric interpretations outside of just algebraic ones, were 
able to answer more questions correctly and had an easier time visualizing and understanding 
the concepts using concept images.  

Geometric representations also help to develop structural thinking (Tabaghi, 2010). 
Tabaghi argued that, typically, students are unable to visually represent the concept or do not 
adequately picture all the possibilities (Tabaghi, 2010, p. 1507).  Therefore, incorporating 
opportunities for the students to explore abstract concepts through visual representations is 
critical and necessary to help students overcome the difficulties and misconceptions in linear 
algebra (Tabaghi, 2010). 

One of the possible solutions of utilizing pictorial approach is included as a sample 
solution in Appendix A. This solution takes on an analytical (geometric) rather than 
procedural (computation-based) approach. First, this solution provides a geometric meaning 
that the projection of x onto y  is parallel to y by shrinking/expanding y (thus the result is yc , 



where c is a non-zero constant). Second, this solution emphasizes a geometric meaning that 
x  minus the projection of x onto y is orthogonal/perpendicular to y  (thus the dot product is 
zero). To help the students to “see” the vector (in blue), basic reasoning about geometric 
addition of vectors is needed. Additional prerequisite knowledge required for this task is: the 
distributive property of dot products and factoring out a constant.  
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