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An extensive body of research exists on students’ function concept in the context of graphing 
in the Cartesian coordinate system (CCS). In contrast, research on student thinking in the 
context of the polar coordinate system (PCS) is sparse. In this report, we discuss the findings 
of a teaching experiment that sought to characterize two undergraduate students’ thinking 
when graphing in the PCS. As the study progressed, the students’ capacity to engage in 
covariational reasoning emerged as critical for their ability to graph relationships in the 
PCS. Additionally, such reasoning enabled the students to understand graphs in the CCS and 
PCS as representative of the same relationship despite differences in appearance. 
Collectively, our findings illustrate the importance of covariational reasoning for conceiving 
graphs as relationships between quantities’ values and that graphing in the PCS might create 
one opportunity to promote such reasoning when combined with graphing in the CCS.   
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Introduction 
First introduced at the elementary grade levels, graphs are essential representations for the 

study of numerous mathematics topics including modeling relationships between quantities, 
exploring characteristics of functions, solving for unknown values, and investigating 
geometric transformations. Highlighting the central role of graphing in mathematics 
education, the Common Core State Standards for Mathematics (National Governors 
Association Center for Best Practices, Council of Chief State School Officers, 2010) contains 
some form of the term graph on more than a third of the document’s pages. Building off of 
the emphasis on graphing at the K-12 level, graphing is central to the study of several 
undergraduate mathematics courses, including calculus, differential equations, and analysis. 

Reflecting the heavy focus on graphing in school mathematics, mathematics education 
research gives significant attention to graphing, with a number of studies (e.g., Carlson, 1998; 
Monk, 1992; Oehrtman, Carlson, & Thompson, 2008) having investigated student thinking in 
the context of the function concept. Although graphing receives a significant focus in 
mathematics education research, little of this focus includes graphing in the polar coordinate 
system (PCS). The PCS is critical to the study of calculus, complex numbers, and modeling 
any system that entails radial symmetry or motion about a center point. Despite the important 
role of the PCS in undergraduate mathematics, available research (Montiel, Vidakovic, & 
Kabael, 2008; Montiel, Wilhelmi, Vidakovic, & Elstak, 2009; Sayre & Wittman, 2007) 
suggests students hold limiting understandings of the PCS, where some of their issues stem 
from problematic connections with the Cartesian coordinate system (CCS). 

In the present study, we explore connections between student thinking when graphing in 
the PCS and existing research on student thinking in the context of graphing and function. 
Specifically, we discuss two undergraduate students’ reasoning when graphing functions in 
the PCS. To graph functions in the PCS, they engaged in several ways of reasoning that 



ranged from plotting discrete points to reasoning about how quantities continuously vary in 
tandem. The former way of thinking enabled them to gain a sense of more basic (e.g., 
constant rate of change) functions, but was not sufficient in and of itself to graph more 
complex (e.g., trigonometric) functions and connect these graphs to their counterparts in the 
CCS. By engaging in covariational reasoning, students were more flexibly able to graph 
relationships in the PCS. Additionally, thinking about functions in terms of covariational 
relationships enabled the students to conceive graphs in the PCS and CCS as representing the 
same relationship despite the graphs’ visual differences. 

Background 
The function concept and graphing are widespread in the teaching of mathematics. Yet, 

research (e.g., Carlson, 1998; Monk, 1992; Oehrtman et al., 2008; Thompson, 1994b) has 
revealed that students often develop understandings of the function concept, particularly in 
the context of graphing, that restrict their future learning. For example, students construct 
function and rate of change understandings that form an impoverished foundation for the 
study of calculus (Oehrtman et al., 2008; Thompson, 1994b). As Carlson (1998) noted, even 
high performing calculus students can lack robust understandings of rate of change and 
exhibit difficulty when interpreting graphs. These difficulties can stem from students’ images 
of function being rooted in visual objects and not two quantities’ values varying in tandem 
(Thompson, 1994b).  

Specific to the PCS, Montiel et al. (2008) identified that students’ function concept can 
inhibit their interpretation of graphs in the PCS. Additionally, the authors identified that the 
(sometimes incorrect) connections students create between the CCS and PCS are often tied to 
their meanings for functions and graphing in the CCS. For instance, students applied “the 
vertical line test” to determine if a graphed relationship in the PCS is a function. Similarly, 
Sayre and Wittman (2007) found that some students rely on the CCS when solving problems 
better suited for the PCS. Collectively, the studies highlighted that students’ ways of thinking 
about function and graphing often do not support robust connections between the PCS and 
CCS, nor do their ways of thinking about the CCS support their PCS concept.  
Covariational Reasoning and Connecting Coordinate Systems 

In exploring students’ sense making in the context of graphing and function, Carlson et al. 
(2002) illustrated the central role of students’ capacity to engage in covariational reasoning. 
Covariational reasoning–defined as the “cognitive activities [of an individual] involved in 
coordinating two varying quantities while attending to the ways in which they change in 
relation to each other” (Carlson et al., 2002, p. 354)–is central to students’ understanding of 
numerous precalculus and calculus topics, including exponential functions (Castillo-Garsow, 
2010; Confrey & Smith, 1995), trigonometric functions (Moore, 2012), rate of change 
(Carlson et al., 2002; Thompson, 1994a), function (Oehrtman et al., 2008), and the 
fundamental theorem of calculus (Thompson, 1994b). While these studies illustrate the 
importance of covariational reasoning in conceiving relationships between two quantities’ 
values and using the CCS to reflect these relationships, these studies have been limited to the 
CCS. Due to the importance of covariational reasoning in graphing relationships, we 
hypothesized that covariational reasoning is critical to students’ PCS graphing capabilities. 

The mental actions1 associated with covariational reasoning are not specific to the 
coordinate system in which one is graphing (nor are they specific to the act of graphing), and 
thus covariational reasoning characterizes ways of thinking that might support students in 
connecting relationships represented in multiple coordinate systems. To illustrate, consider 

                                                
1 See Carlson et al. (2002) for an elaborate description of the mental actions associated with 
covariational reasoning.  



graphing the relationship defined by f (x) = x2 . For the function f, x > 0, as the input 
increases, the output increases with an increasing rate. It follows that the output increases 
such that the change of output also increases for successive equal changes of input. These 
change of output values increase by a constant amount for successive equal changes of input; 
as the input changes from 0 to 1 to 2 to 3 and so on, the output increases by 1, 3, 5, and so on; 
hence, the change of output increases by 2 for each successive change of input of 1. 

The aforementioned covariational relationship can be represented in the CCS ( y = x2 , 
Figure 1, left) and PCS ( r = θ 2 , Figure 1, right). Although changing coordinate systems 
results in a different visual object, covariational reasoning enables conceiving the graphs in 
the same way; changing the coordinate system changes the shape of the curve, but the 
relationship remains invariant. Graphs in different coordinate systems form different visual 
objects that represent the same relationships because the shape of the graph matters only in 
that it represents how two quantities’ values change in tandem.  

 
Figure 1. Graphing the same covariational relationship: y = x2  (left) and r = θ 2  (right). 

Methodology 
Stemming from radical constructivism (Glasersfeld, 1995) underpinnings, which takes the 

stance that an individual’s knowledge is fundamentally unknowable to any other individual, 
we used qualitative methods to develop models of students’ thinking (Steffe & Thompson, 
2000) that explain their observable behaviors. Specifically, we conducted a teaching 
experiment (Steffe & Thompson, 2000) to investigate the following research questions: 

1. What ways of reasoning do students engage in when graphing functions in the PCS? 
2. How do the ways of reasoning identified in the first research question relate to the 

students’ thinking when graphing functions in the CCS? 
Subjects and Setting 

The subjects of this study (John and Katie) were two undergraduate students enrolled in a 
pre-service secondary mathematics education program at a large public university in the 
southeast United States. At the time of data collection, the students were third year (in credits 
taken) students taking the first pair of courses (one methods and one content) in a pre-service 
secondary mathematics education program. We chose the students on a voluntary basis from 
the content course, in which the lead author was the instructor. 

The content course engaged the students in quantitative reasoning (Thompson, 1990) and 
covariational reasoning to explore topics central to secondary mathematics (e.g., 
trigonometry, exponential functions, linear functions, rate of change, and accumulation). 
Prior to graphing in the PCS, the course explored ideas of angle measure and trigonometric 
functions. The approach to these topics was grounded in previous research (Moore, 2012) on 



students’ learning of angle measure and trigonometric functions, and included a significant 
focus on covariational and quantitative reasoning. We expected the students to be familiar 
with covariational reasoning when entering the study, but we questioned whether they would 
or would not spontaneously engage in said reasoning when graphing in the PCS.  
Data Collection and Analysis 

The teaching experiment (Steffe & Thompson, 2000) consisted of five 75-minute 
teaching sessions with the pair of students. The first teaching session developed conventions 
of the PCS (e.g., coordinate pairs representing the distance from a fixed point and the 
measure of an arc) and supported students’ spatial reasoning in the PCS (e.g., considering the 
location of a point that has a varying arc measure and a constant distance measure, and vice 
versa). The subsequent teaching experiment sessions, which are the focus of the present 
report, involved graphing functions of the form r = f (θ )  or θ = g(r)  in the PCS.  

The teaching sessions and all student work were videotaped and digitized. Also, fellow 
researchers observed each teaching session, taking notes of the interactions between the 
researcher and students. We debriefed immediately after each session in order to discuss the 
students’ thinking and document all instructional decisions. We analyzed the data using an 
open and axial coding approach (Strauss & Corbin, 1998). The data was first transcribed and 
instances offering insights into the students’ thinking were identified. We then performed a 
conceptual analysis (Thompson, 2000) of these instances in order to generate and test models 
of the students’ thinking so that these models provided viable explanations of their behaviors. 
We particularly sought to characterize the students’ reasoning when graphing in the PCS and 
CCS. 

Results 
After exploring2 the meaning of coordinates (e.g., a radial distance and an angle measure 

in radians) and various conventions of the PCS during the first teaching session, the teaching 
sessions explored representing relationships in the PCS. These relationships included linear 
functions, quadratic functions, and trigonometric functions. As John and Katie completed the 
proposed tasks, their solutions offered insights into ways of thinking that support graphing in 
the PCS and connecting graphs in the PCS and CCS.  
Covariational Reasoning and Graphing Relationships 

We transitioned into graphing relationships by tasking John and Katie with graphing the 
function f (θ ) = 2θ +1 . To begin, they graphed the relationship in the CCS (e.g., y = 2x +1) 
by identifying both the x- and y-intercepts and connecting these points with a line. The 
students then graphed the function in the PCS by plotting points for θ  values of 0, 1, 2, 3, 
and 4, and connecting these points (Figure 2). They then continued describing their graphs 
(Table 1). 

Table 1 
1 
2 
3 
4 
5 
6 
7 

Katie: They went out by two, like you know here (pointing at the two in the formula 
r = 2θ +1 ) the slope is like two (tapping along the CCS graph). 

Int.: This has no slope (pointing to the PCS graph)… 
Katie: No, I’m relating the slope here (pointing to the CCS graph), to the difference 

in the radius of two each time (tapping along the PCS graph). Like [the 
radius is] one, three, five, seven, nine, eleven (pointing to the corresponding 
points on the polar graph), [the radius] increases by two. 

This interaction illustrates Katie reasoning about the amount of change in the distance 

                                                
2 The results of these explorations will be reported elsewhere, but we note that during the 
construction of the PCS, the students showed little familiarity with the PCS. 



from the pole, which she referred to as the “radius,” for successive changes of angle measure 
and connecting this relationship with the “slope” of the line in the CCS. After this interaction, 
Katie and John claimed that both graphs convey a “constant rate of change” between the 
input and output values. Katie then added, “That’s cool…because you’d never see this 
(referring to the PCS graph) and be like, that’s a linear function,” suggesting that by 
conceiving the graphed relationships in terms of covarying quantities’ values, they conceived 
both graphs, which are perceptually different, as representative of the same relationship.  

 
Figure 2. Students’ graphs of a constant rate of change relationship. 

Based on the students’ approach to graphing a linear relationship, we conjectured that 
similar reasoning would enable them to graph a relationship with a non-constant rate of 
change. We asked the students to graph the relationship r = θ 2 , which they spontaneously 
compared to the relationship r = θ . Like their solution to graphing the linear function, the 
students first plotted points and connected the points. They then compared their graphs (see 
Figure 3 for their written products) (Table 2). 

Table 2 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

Katie: r of theta, but compared to r of theta squared it’s like expanded (Katie points 
to the two graphs and then spreads her hands apart). Like, like, this one’s 
like much more tighter swirled (moving her hands in a circular motion) but 
then this one (referring to quadratic) is just like looser I guess. 

John: Yeah, we can see better, with both of them, both graphs, that the change in 
radius (referring to quadratic) for every radian further that the angle is 
increasing (rotating his hand in successive movements while spreading his 
index and middle finger apart)…Um, the radius, every time is increasing at 
an increasing rate (referring to quadratic). 

Int.: Okay now what’s that mean in terms of amounts of change? 
John: We could do equal changes in theta and then… 
Katie:  Like, if we looked at first these two then these two points (indicating the 

points (9, 3) to (16, 4), and then (16, 4) to (25, 5)), the change of theta here 
would be this, that length (drawing an arc from (9, 3) to (9, 4)). But then the 
change is radius would be up that line (drawing a segment from the point (9, 
4) to (16, 4)).   

John: Which is seven. 
Katie: And then we have the same thing (draws an arc from (16, 4) to (16, 5) and a 

segment from (16, 5) to (25, 5))…so you can see these black lines, the 
[change in radius] is increasing.  

John: So that’s like nine to sixteen (pointing to the segment connecting the points 
(9, 4) and (16, 4)), which is seven, and this one is sixteen to twenty-five 
(pointing to the segment connecting the points (16, 5) and (25, 5)), which is 
nine, which we can see there too (pointing to the Cartesian graph). 

Katie first compared the perceptual shapes of the graphs (lines 1-4). Following this, the 
students reasoned about amounts of change and rates of change between the two quantities to 
compare and make sense of each graph’s shape. Specifically, the students reasoned that the 



graph of r = θ 2  is “looser” or moves away from the pole “faster” because r increases at an 
increasing rate with respect to an increasing θ , which they confirmed by identifying specific 
changes in the quantities’ values. 

Immediately following John’s last statement (line 24), the students denoted amounts of 
change on a graph in the CCS (Figure 3), while Katie claimed, “Like our change input here 
(referring to CCS graph) would represent the change in this angle measure (indicating the 
corresponding change on the PCS graph), and then our output, change of radius length, and 
that’s increasing for equal changes.” Thus, compatible with the students’ actions when 
graphing the linear function, the students constructed a structure of covarying quantities that 
enabled them to see a graph in the PCS and a graph in the CCS as one in the same. 

 
Figure 3. Students’ graphs of the quadratic function. 
Covariational Reasoning and Conceiving a Trigonometric Function 

Over the course of the study, Katie and John leveraged covariational reasoning to 
construct and connect graphs in both coordinate systems. We thought the students might 
engage in similar reasoning to interpret a given graph in the PCS, and thus we tasked the 
students with determining a formula for a given graph ( r = sin(θ ) , Figure 4). After 
identifying r values corresponding to θ  values of 0, π/2, π, and 3π/2, the students conjectured 
that r = sin(θ )  is the appropriate formula for the given graph. The students then drew a graph 
of the sine function in the CCS and explained their solution (Table 3). 
Table 3 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Katie: So we start here (pointing to the pole in the PCS). 
John: Ya, and we’re sweeping around (making a circular motion with his hands). 

As theta’s increasing, distance away from the origin is increasing (Katie 
traces along the polar graph from 0 radians to π/2 radians) and then 
decreases again…it increases until pi-over-two and then it starts decreasing. 

Int.: And then what happens from like pi to two-pi? 
Katie: It’s the same. 
John: Same idea except, the radius is going to be negative, so it gets more in the 

negative direction of the angle we’re sweeping (using marker to sweep out a 
ray from π to 3π/2 radians – see Figure 3) until three-pi-over-two, where it’s 
negative one away. 

Katie: This is the biggest in magnitude, so it’s the furthest away (placing fingers at 
(1, 3π/2) and (1, π/2)), and then [the distance] gets smaller in magnitude 
(tracing one index finger along an arc from (1, 3π/2) to (1, 2π) and the other 
index finger along the graph – see Figure 3). 

When making sense of the graph, and compatible with the previous interaction (Tables 1-
2), the students used a combination of identifying points and covariational reasoning. 
Specifically, the students reasoned about the distance from the pole as increasing or 
decreasing for an increasing angle measure to make sense of the relationship conveyed by the 
graph. For instance, Katie reasoned that as the angle measure increases from 3π/2 radians to 
2π radians, the distance from the pole decreases from a magnitude of one to zero, which 
corresponds to the value increasing from -1 to 0 (Figure 4). Following this interaction, the 



students continued justifying their formula by describing that a graph of y = sin(x)  in the 
CCS conveys the same covariational relationship with identical critical points as the PCS 
graph. Thus, like the previous tasks, by identifying various points and engaging in 
covariational reasoning, the students identified the formula for the given graph and concluded 
that both the CCS and PCS representations of the formula convey the same relationship.  

 
Figure 4. Students covarying quantities. 

Discussion and Implications 
In the present study, the students spontaneously reasoned about quantities’ values varying 

in tandem when graphing and interpreting functions in both the CCS and PCS. The students’ 
capacity to reason about graphs as conveying covariational relationships appeared to support 
connections among graphing functions in both systems. That is, as the students moved from 
coordinate system to coordinate system, covariational reasoning enabled the students to 
understand each representation (including the formula) as conveying the same relationship 
despite differences in the visual features of the graphs (and formula). Such reasoning, in 
combination with understanding the conventions of the PCS, might support avoiding the 
difficulties that Montiel et al. (2008) found when working with calculus students.  

The findings of this study suggest that a potential benefit of incorporating the PCS in the 
study of mathematics is increasing an emphasis on reasoning that enables a student to 
approach graphs in both systems in compatible ways. Investigating graphing only in the CCS 
has the possible consequence of reinforcing common student conceptions of the function 
concept and graphing that do not entail reasoning about covarying quantities (e.g., conceiving 
graphs as pictures). By prompting students to transition from coordinate system to coordinate 
system, a need can be established for ways of thinking (e.g., covariational reasoning) that 
enable conceiving graphs in each system as conveying the same relationship. As such, 
graphing in both systems might foster abstractions stemming from various operations 
involved in covariational reasoning (e.g., rate of change reasoning and coordinating amounts 
of change). For instance, for Katie, graphing in both coordinate systems seemed to 
foreground the “constant rate of change” of a linear relationship (Table 1), as opposed to the 
slope of a line. At this time, this potential use of the PCS in secondary mathematics remains 
merely a hypothesis, and future studies should investigate promoting covariational reasoning 
through the use of the PCS in combination with the CCS. 

We also note that the students appeared to engage in a combination of smooth and chunky 
images of change, as defined by Castillo-Garsow, Johnson, and Moore (submitted), when 
graphing relationships in the PCS. Throughout the instructional sequence, the students relied 
on first graphing discrete points and comparing discrete amounts of change between these 
points, which is suggestive of chunky images of change. The students also exhibited 
behaviors consistent with smooth images of change. For instance, the students reasoned about 
relationships in terms of one quantity increasing or decreasing for a continuous increase in 
the other quantity to make sense of graphs’ behaviors between identified points (e.g., Table 
3). The students’ actions highlight the importance of both images of change for graphing 
relationships and constructing connections from one coordinate system to another, suggesting 



that instruction should emphasize both ways of reasoning so that they work in tandem. As the 
authors (Castillo-Garsow et al., submitted) described, these ways of thinking have different 
mathematical roots and consequences, and additional research is needed to investigate 
relationships between these ways of thinking in the context of student learning.  
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