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Sjogren (2010) suggested that formal proof could be understood as an explication (Carnap, 
1950) of informal proof. Explication describes the supplanting of an intuitive or unscientific 
concept by a scientific or formal concept. I clarify and extend Sjogren’s claim by applying 
Carnap’s criteria for explication (similarity, exactness, and fruitfulness) to definitions, theorems, 
axioms, and proofs. I synthesize a range of proof-oriented research constructs into one 
overarching framework for representing and analyzing students’ proving activity. I also explain 
how the analytical framework is useful for understanding student difficulties by outlining some 
results from an undergraduate, neutral axiomatic geometry course. I argue that mathematical 
contexts like geometry in which students have strong spatial and experiential intuitions may 
require successful semantic style reasoning. This demands that students’ construct rich ties 
between different representation systems (verbal, symbolic, logical, imagistic) justifying 
explication as a reasonable analytical lens for this and similar proof-oriented courses.  
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 In the course of researching the teaching and learning of proof, mathematics educators are 
continually faced with the need to clarify what it means to understand proving and which aspects 
of proving students must learn. Thus, researchers adopt the task of developing operational 
definitions of mathematical proof, at least as it relates to the classroom (Stylianides, 2007). 
These attempts have included clarifying the purpose(s) of proof (Hanna & Jahnke, 1993; Hersh, 
1993), delineating the boundaries of acceptable proof (Weber & Alcock, 2009), and relating 
proof and argumentation (Pedemonte, 2007). One common theme to many of these discussions is 
the relationship between more and less formal mathematical notions and proofs. Sjogren (2010) 
claimed that formal proof could be understood as the explication (Carnap, 1950) of informal 
proof. Carnap defined explication as the process of replacing informal or unscientific concepts 
with formal or scientific ones. In this paper I explore how Carnap’s criteria for explication 
provide a lens for analyzing student’s proof-oriented mathematical activity, particularly in a 
mathematical context like geometry in which students have rich sources of intuitive and pre-
formalized meanings. In so doing, I elaborate and specify Sjogren’s claim regarding aspects of 
the relationship between more formal and less formal proof in advanced mathematics.  
 The main contribution of this paper is the presentation and elaboration of the framework for 
using explication to analyze students’ proof-oriented activity. I present some basic findings 
regarding students’ learning in undergraduate, neutral axiomatic geometry to illustrate the utility 
of the analytical lens. I do not fully endorse Sjogren’s (2010) claim that all formal proof should 
be viewed as explication of informal proof. Rather, in ways I shall make more explicit, I view 
explication as a useful lens for particular advanced mathematical contexts. Axiomatic geometry 
appears exceptionally appropriate for analysis in terms of explication because: 

1. students often enter an undergraduate geometry course with more spatial, experiential, 
and semi-formalized knowledge than in any other advanced mathematics course (i.e., 
intuitive and less formal conceptions in need of explication),  

2. the course which housed these investigations defines and constructs proofs related to very 
basic experiential concepts such as distance, spatial arrangement, rays, and lines, and 



3. it is difficult to understand and construct many geometric proofs in a completely syntactic 
style (Weber & Alcock, 2004, 2009) without spatial or imagistic interpretation (i.e.- 
semantic reasoning is often preferable in geometry).  

Carnap’s (1950) criteria for explication 
 Carnap was a proponent of logical positivism in the sense that he believed in the 
advancement of knowledge toward objective truth via the expansion of logical and scientific 
analysis. As such, he viewed explication as an historical phenomenon by which unscientific 
concepts were replaced by concepts ready for scientific treatment. He claimed a formal concept 
explicates a less formal one whenever it has similarity, exactness, and fruitfulness. Carnap (1950) 
provides the example of how temperature explicates warmness. Warmness is an experiential 
concept that is relative to the observer (the same room may be warm when stepping in from the 
snow and not warm when stepping out of a sauna). Temperature is similar to warmness in that 
most experiences of the latter can be expressed and explained in terms of the former. 
Temperature however differs in that it is an exact concept embedding warmness in a scientific 
body of theory, namely that of numerical measurement or quantity. Finally, temperature 
explicates warmness because it is fruitful for the construction of further scientific theory such as 
the precise numerical relationships among pressure, temperature, and volume (PV=nRT). 
Fruitfulness is a relative property of any explication that would primarily function to distinguish 
various possible explications (were several available).  
 My use of explication differs from Carnap’s (1950) in the sense that I am interested in 
conceptual shifts in the understanding of individual students, a focus that Carnap explicitly 
distances himself from (calling it “psychologism,” p. 41). As such, I may refer to the processes I 
analyze in this paper as psychological explication, the process by which an individual supplants 
or corresponds an intuitive or less formal concept with a formalizable concept appropriate for the 
construction of mathematical proof.  

Explication in a body of geometric theory 
 To illustrate how this relates to formal mathematical concepts, I provide several examples of 
mathematical explications from the body of theory developed in the classroom from which I 
draw the data presented in this paper. I claim that any element of formal mathematical theory 
(definition, axiom, theorem, or proof) may at times be a psychological explication of an intuitive 
or less formal concept. Definitions often explicate informal categories or properties (Alcock & 
Simpson, 2002; De Villiers, 1998); axioms explicate basic intuitions of number or space; 
theorems explicate pre-formalized patterns and mathematical phenomena (Stylianides & Silver, 
2009); proofs can explicate less formal arguments. The literature on cognitive unity (Antonini & 
Mariotti, 2008; Pedemont, 2007) explores the question of exactly when arguments and formal 
proofs correspond more thoroughly than I shall in this paper.  
 To illustrate mathematical explications, consider how the text (Blau, 2008) used in the 
axiomatic geometry course I studied defines basic geometric objects. Any plane as a collection 
(P, L, d, [ω], µ) where P is the set of points, L is the set of subsets of P called lines, d:PxP → � 
a real-valued distance function (AB=d(A,B)), ω the sup of the set of all distances (called the 
diameter of the plane), and µ the angular distance function. Table 1 presents how other geometric 
concepts are then defined (explicated) from these elements of any plane.  
Concept Intuitive meaning Notation Definition (Blau, 2008) 
Point B lies between 
points A and C (called a 
betweenness relation) 

B lies on the direct path 
from A to C or B is 
spatially between A and C 

A-B-C Points A, B, C are distinct and collinear such 
that AB+BC=AC 



Line segment with 
endpoints A and B 

The section of a line 
between and including A 
and B 

AB Given that 0<AB< ω,  
AB = A,B ∪ X|A-X-B  

The ray with endpoint A 
through point B 

Half-line or all points 
beginning with A in the 
direction of B 

AB Given that 0<AB< ω,  
AB = A,B ∪ X|A-X-B ∪ X|A-B-X  

Table 1. Blau’s (2008) definitions for basic geometric properties and objects in the plane. 
 I claim that each of these formal definitions represents an explication of the associated 
intuitive concept. For instance, the definition of ray is similar in the sense that the set defined 
above coincides with rays as they are commonly defined on the Euclidean plane. Blau (2008) 
defines spherical geometry where every point on the sphere is distinct, lines are great circles, and 
distances correspond to the length of the minor arc between points. As such, the above definition 
of a ray on the sphere designates a “half-line” in the sense that it has two endpoints that are 
antipodes (see Figure 1). The definition of ray is exact because it embeds the spatial relations in a 
precise body of theory: numerical equations and set theory. The definition is fruitful since the 
author proved theorems about rays based on this definition and the associated axioms. This final 
criterion assessing the definition based on its ability to yield formal proof relates closely to 
Mariotti et al.’s (1997; Antonini & Mariotti, 2008) notion of “theorems” as a triad of statement, 
proof, and associated body of theory. A definition’s quality as an explication of a concept is 
intimately related to the associated body of theory and proofs built upon that definition.  

 
Figure 1. Imagistic representations of rays in the Euclidean and spherical planes. 

 These definitions are by no means similar in every way to the intuitive concepts they 
explicate. Distance intuitively corresponds to the space between two points or the distance 
travelled along a path, but Blau (2008) simply defines distance as a function that obeys certain 
axioms (positivity “AB≥0”, symmetry “AB=BA”, definiteness “AB=0 iff A=B”, additivity “If 
AB+BC≤ !, then either AB+BC=AC, BC+CA=BA, or CA+AB=CB”). Rays generally carry a 
notion of “direction” that is absent from the set-theoretical definition. The second point “B” in a 
ray is arbitrary, but the definition appears to distinguish it from other points in the ray. The 
theorem “Given C∈AB such that 0<AC<  !, AB=AC” explicates the arbitrarity of the second 
point in the ray. However, the provability of such theorems simultaneously display the 
fruitfulness of the explication and restore similarity between formal and less formal concepts 
(what Weber, 2002, called “proofs that justify axiomatic structure”).  

An Explication Framework for Proof-oriented Activity 
 The lens of explication assumes a relationship between less formal and more formal 
conceptions. However, in traditional advanced mathematics classrooms formal theory is often 
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presented as a self-sustaining structure with varying levels of connection to informal or intuitive 
meanings (Weber, 2004). As such, explications (noun) are presented to students without seeking 
to engage students in explication (verb) leaving the level of coordination between formal and 
informal meanings up to the student (what Freudenthal, 1973, 1991, would call an anti-didactical 
inversion). Thus I shall apply the psychological explication criteria as metrics for measuring 
cognitive distances between students’ formal and informal conceptions within a conceptual 
“space”. To be clear, students may lack any conceptions or schemes for activity that correspond 
to “formal conceptions,” in which case the metric assesses the distance between student 
conceptions and expert (teacher) conceptions embodied in expectations upon student learning. I 
draw upon a number of extant constructs to define this “space” for psychological explication.   
 First, as Weber and Alcock (2004, 2009) used Goldin’s (1998) theory of representation 
systems to distinguish syntactic and semantic reasoning, I shall generally define students’ formal 
and less formal mathematical conceptions according to the representation system in which they 
exist. For instance, according to Weber and Alcock (2009), any use of diagrams or images for 
proving constitutes a shift from the representation system of mathematical proof (RSMP) into an 
imagistic representation system. This indicates that the student corresponds contents formal 
statements with less formal instantiations in a diagram. For the definitions involved, this 
generally involves a shift from the symbolic notation or formal definition of a concept to an 
example represented by a diagram (generic or particular). In the language of Tall and Vinner 
(1981) the student has shifted from the concept definition to some element of the concept image. 
Regarding theorems, a student may seek to prove a theorem by reasoning about an intuitive 
paraphrase of the statement claim (Dawkins, 2012b). This entails translating the statement from 
the RSMP into a less formal verbal representation system (like paraphrasing the above theorem 
to say “The second point in a ray is arbitrary”). Regarding proof, when a student develops an 
argument or informal proof (I use the term “thought experiment” after Lakatos, 1976) toward 
formally proving a claim, they often do so based on less formal interpretations without thorough 
warrants or details. As such, thought experiments may draw from a number of tools outside of 
the RSMP before it is translated into a form compatible with the RSMP like formal proofs.  
 Figure 2 visually represents this “space” relating the formal and less formal elements in their 
respective representation systems. The left column represents definitions, the middle column 
represents theorems or axioms, and the right column represents proof. The upper row represents 
the explications for the lower row’s less formal elements. The upper elements are related to their 
neighbor below by similarity. The upper elements are distinguished from the entry below them 
by their exactness. Finally, the fruitfulness of definitions, axioms, and theorems depends upon 
their ability to yield appropriately explicated terms to their right in the array (definitions must 
help articulate theorems that must be provable based on those definitions). I distinguish between 
the extent to which a formal element matches its informal counterpart (similarity) and the extent 
to which the informal conception or representation matches its formal counterpart (co-similarity).  



 
Figure 2. The space of cognitive elements involved in proof-oriented mathematical thinking.  

Connections to Prior Research on Proof Production 
 To show the theoretical utility of this representation, it is helpful to illustrate the number of 
prior theoretical tools and research that informed my construction of it. I use Goldin’s (1998) 
notion of representation systems reflecting my framework’s conceptual ancestry in the 
semantic/syntactic dichotomy identified by Weber and Alcock (2004; 2009). They distinguish 
proof attempts according to whether they stay in the RSMP (the upper row of Fig 2) during their 
proving activity (called syntactic proof activity) or whether they shift into an alternative 
representation system (the lower row) to guide their proving via less formal reasoning (called 
semantic proof activity). Thus, mapping out students proving actions in the space represented in 
Fig 2 entails identifying which of these two types of proof actions students use (this diagram is a 
more elaborate transpose of Alcock & Inglis’s, 2009, diagrams for semantic/syntactic proving).  
 The process of psychological explication is strongly related to the Realistic Mathematics 
Education (Freudenthal, 1973, 1991; Gravemeijer, 1994) emphasis on engaging students in the 
processes of mathematical activity as a means of mathematical learning. In particular, Zandieh 
and Rasmussen (2010) adapted Gravemeijer’s (1999) stages of mathematical modeling to the 
case of students developing a mathematical definition. This process involves students initially 
forming a concept definition out of a concept image (represented in Fig 2 as movement up in the 
first column). This stage establishes basic similarity and exactness. Next students reorganize or 
develop their concept image in light of the new concept definition. This stage entails the creation 
of a concept image of their concept definition (which I locate in the upper left representation 
system) and the reorganization of less formal elements of the concept image (in the lower left 
representation systems). This reorganization of the less formal concept image helps establish co-
similarity. As the definition is extended to new disparate mathematical tasks and contexts, the 
concept image and concept definition are continually modified to accommodate a broader scope 
of mathematical activity (Dawkins, 2012a). These latter stages of generalization and formal 
activity yield the fruitfulness of the explicated definition.  
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 Dawkins (2012b) displays how one students’ consistent interpretation of formal statements of 
theorems and axioms (upper middle) in terms of dissimilar paraphrases (lower center) inhibited 
his ability to form logically valid proof within the RSMP. The logic of this student’s reasoning 
appeared inherently descriptive of quasi-empirical phenomena in his mental diagrams (lower 
left). This fostered a thought experiment that convinced the student, but his reasoning subtly 
changed the logical structure of the statements to be proven. As a result, his thought experiment 
lacked exactness because it conflicted with the formal logic of conditional statements in which 
the theorem to be proven was embedded. Though he produced a thought experiment in a 
semantic style, the lack of co-similarity in his reasoning undermined his success.  
 Finally, several tools for analyzing students’ proving activity relate thought experiments to 
formal proofs. As mentioned above, cognitive unity (Mariotti et al., 1997; Pedemonte, 2007) was 
coined to describe similarity in this regard. Raman (2003) defined key ideas as intuitive or 
strategic insights that allowed students to explicate a thought experiment. Proof schemes (Harel 
& Sowder, 1998) distinguish means of convincing that do (deductive) and do not (inductive, by 
authority) satisfy the exactness criterion for the RSMP.  

Analyzing Proving with an Explication Lens 
 This analytical lens emerged through analysis of a series of task-based interviews in 
conjunction with a neutral axiomatic geometry course. Each interview was video-recorded and 
all written notes were captured with a Livescribe pen. All dialogue was transcribed and 
qualitatively coded in several stages. First, each interview was “chunked” according to the task 
students worked on and then into individual proving actions taken by the students. Each proving 
action was assigned (1) a description summarizing the mathematical activity, (2) codes noting 
the resources the students drew upon for proving, and (3) codes denoting how the proving action 
related to the four explication criteria. This analysis allowed me to analyze correspondences 
between proving actions and the explication criteria. Mapping students’ proving actions within 
the framework space above provides a visual means of mapping students’ progressions of 
reasoning during their proof production. Each of the four primary criteria (similarity, co-
similarity, exactness, and fruitfulness) has helped assess students' successful or unsuccessful 
attempts to prove claims. The ongoing analysis indicates that certain types of proof actions tend 
to correspond with particular explication criteria. For instance, Kirk often paraphrases formal 
statements into an informal register (paraphrasing actions) subtly shifting the meaning of the 
statements leading to a lack of co-similarity (loss of semantic content of the claim) or a lack of 
exactness (shifts in logical structure of the claim). This sometimes frustrated his proof attempts 
because the statements he reasoned about or cited as warrants differed non-trivially from the 
formal statements in the body of theory (Dawkins, 2012b).  
 Oren, Kirk’s interview partner, instead displayed strong intuition and logical reasoning skills, 
but rarely learned the statements of theorems. He shows a strong preference for diagrammatic 
reasoning, but often could not translate his visually-produced thought experiments into proofs in 
the RSMP. This largely resulted from his lack of awareness of available warrants to justify his 
claims. His diagrammatic reasoning also led him to metonymize related mathematical objects 
such as points A,B (undefined), distance AB (a number or function value), and ray AB (a set). 
Table 2 presents how static diagrams of geometric objects lack wholly distinct representations of 
related objects whose explications differ significantly. The superficial similarity of the symbolic 
notations exacerbates students’ tendency to metonymize or conflate these objects. Oren’s visual 
reasoning led him to consistently metonymize geometric objects and to construct thought 
experiments based on spatial intuition, rather than axioms, definitions, or theorems from the 



body of theory. As such, his reasoning often lacked exactness (appropriate mathematical 
structure) and fruitfulness (finding appropriate warrants within the class’ body of theory).  

Object Explicated Structure Symbolic 
Representation 

Imagistic Representation 

Points A, X, and B 
 

Undefined Terms A, X, B 

 
Distance between A 
and B 

Function value d(A,B) d(AB)=AB 

 
Segment with 
endpoints A and B 

Set of points universally quantified 
over a betweenness relation 

AB  

 
Betweenness A-X-B Property of triplet of collinear 

points given AX+XB=AB 
A-X-B 

 
Ray with endpoint A 
through point B 

Set of points universally quantified 
over two betweenness relations 

AB  

 
Table 2. Distinct but related mathematical objects represented in multiple registers. 

Future Directions 
 The Explication analytical lens has helped in articulating, representing, and analyzing Kirk 
and Oren’s proving activity in neutral, axiomatic geometry. It also revealed correspondences 
between the proving actions common to those two students and how they often rendered their 
proving activity ineffective. The overarching goal of the interviews was to provide the researcher 
with pedagogically actionable insight into how students act in relation to the body of theory in 
this course. In light of Kirk and Oren’s challenges and successes, the author piloted a redesigned 
geometry course focusing on helping students view the formal elements of theory as explications 
of intuitive geometric concepts. As such, the class engaged in mini-reinvention cycles exploring 
how the axioms could “model” the known geometric spaces (Euclidean, spherical, and 
hyperbolic). The author was guided in his teaching method by trying to support students in 
establishing similarity, co-similarity, exactness, and fruitfulness regarding formal and informal 
conceptions of key course concepts. Thus, my ongoing research explores how the explication 
lens can foster insight into students’ proving and how semantic and syntactic elements can be 
thereby balanced and integrated in proof-oriented instruction (Weber & Alcock, 2009).  
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