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In this paper, we describe an inquiry-oriented method of using metaphors to support 
students’ development of conventional logical reasoning in advanced mathematics. Our 
model of instruction was developed to describe commonalities observed in the practice of two 
inquiry-oriented real analysis instructors. We present the model via a general thought 
experiment and one representative case study of a students’ metaphorical reasoning. Part of 
the success of the instructional method relates to its ability to help students reason about, 
assess, and communicate about the logical structure of mathematical activity. In the case 
presented, this entailed a students’ shift from using properties to describe examples to using 
examples to relate various properties. The metaphor thus imbued key example sequences with 
meta-theoretical significance. We introduce the term “wedge” to describe such examples that 
distinguish oft-conflated properties. We also present our analytical criteria for empirically 
verifying the specific influence of the metaphorical aspect of instruction.  
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Introduction 
Philosophers classify logic as a form of meta-language because it describes the structure 

of more general forms of linguistic expression. It seems consistent then that reasoning 
specifically about logic is a form of metacognition. While the logical form of peoples’ 
reasoning has been studied extensively, few studies carefully distinguish whether research 
subjects engage in linguistic analysis or metacognition, what we call reasoning about logic. 
Formalized logic, by definition, ignores the semantic content of statements or is at least 
generalizable beyond particular semantic content. Careful analysis of many previous studies 
on logical reasoning reveals that research subjects often reason about the semantic contents of 
statements or tasks, meaning the researcher may only observe the logic of reasoning. Since 
mathematics education studies show that students struggle with key logical structures in 
advanced mathematics like quantification (Epp, 2003, 2009; Roh & Lee, 2011), it seems 
important that students learn both standardized logical conventions and how to notice and 
assess the logical validity of their own mathematical reasoning. In other words, advanced 
mathematics students must develop tools for reasoning about logic and for transferring 
generalizable logical tools (ignorant of particular context) into their current context of 
reasoning (like sequence properties). This study addresses the following research questions: 

1. How can mathematics instruction foster students’ ability to reason about logical 
structure in mathematical activity and their adherence to logically valid forms?  

2. How do metaphors for logical structure influence students’ reasoning about particular 
examples in the context of real analysis?  

The first question relates to our broader ongoing investigation of logic instruction in 
advanced mathematical courses. We present our findings from observations of two inquiry-
oriented real analysis faculty via a thought experiment that models the common instructional 
method we observed in their classrooms. This method employed metaphors or stories to 
represent logical structure such that students could examine, assess, and communicate about 
such structure itself (reason about logic). The second question relates to the particular case 
we feature in this paper in which the professor used a metaphor to model and discuss the 
roles two key examples played in the class’ theory of sequence properties.  



Theoretical Backdrop 
Our theoretical backdrop is inherently constructivist, more specifically aligned with the 

perspective called "radical" constructivism (von Glasersfeld, 1995). Learning should be 
characterized as students organizing their own mental and physical activity into schemes that 
support goal-oriented activity. The "transfer" or "application" of knowledge should not be 
viewed as use of an abstract tool for a specific situation, but rather treating a new situation as 
the "same" as a previously encountered one such that it is assimilated into the prior scheme of 
activity (ibid, 1995). Our characterization of "transfer" is consonant with Lobato and Siebert's 
(2002) notion of actor-oriented transfer and with Wagner's (2006) notion of transfer-in-
pieces. We frame our questions of logic learning in terms of transfer to address the apparent 
paradox of how students can both reason about mathematics (semantic content) and reason 
about logical structure (ignorant of content). It should be pointed out that what we refer to as 
metaphors is often described in psychological literature as analogies. The term "metaphor" 
(treating one thing as if it were another) is used because it more closely matches our 
understanding of transfer in terms of assimilation. Our paradigm for metaphorical reasoning 
however closely parallels Holyoak’s (2005) characterization of analogical reasoning.  

The case study featured in this paper concerns the use of examples in proof-oriented 
mathematics, which has been extensively studied. Such examples can be used to refute a 
conjecture as a counterexample (e.g., Zazkis & Chernoff, 2008), to verify a conjecture or to 
understand a proof (Harel, 2001; Inglis, Mejia-Ramos, & Simpson, 2007; Weber, 2008; 
Weber, Porter, & Housman, 2008), to gain understanding of definitions (e.g., Alcock & 
Weber, 2008), and to elaborate concept images (e.g., Vinner, 1991). Whereas the example-
related literature mentioned here often focused on examples students or mathematicians 
generate, our emphasis in this paper is on how professors can use metaphorical reasoning to 
guide their students’ use of examples for formal mathematical activity.    
Students’ Reasoning about Logic versus the Logic of Students' Reasoning  

Constructivism casts learning as organization of experience and action into schema that 
regulate human activity, rather than the acquisition of direct knowledge of external systems 
and phenomena. Research on students’ logical activity indicates that their untrained reasoning 
(Evans, 2005) is not always consonant with formalized logic, but grows more sophisticated 
over time (Inhelder & Piaget, 1958). Logic then must be understood as an organization of 
human reasoning. Research upon logic must be careful not to deem reasoning as "illogical" 
when it differs from the formalized system of logic agreed upon by the mathematical or 
philosophical communities. Noting other researchers inherently sought to make "thought the 
mirror of logic," Piaget (1950) suggested, "simply to reverse the terms and make logic the 
mirror of thought, which would restore to the latter its constructive independence" (p. 30).  

Students might be taught formalized logical systems to help them organize and 
systematize their naïve reasoning. In line with current research on “transfer” (Lave, 1988; 
Lobato & Siebert, 2002; Wagner, 2006) however, exposure to abstract systems does not 
guarantee formalized reasoning, especially because formal logic ignores semantic content. As 
Wagner (ibid.) said, “Abstraction [is] a consequence of transfer and the growth of 
understanding—not the cause of it" (p. 66). Thus in the paper, we investigate how students’ 
learning about the logic of their reasoning “transfers” to their ongoing mathematical activity.  

Description of the Study and Data Analysis 
We embarked upon joint analysis of two real analysis classes in order to identify shared 

and effective tools or methods of instruction and learning that emerged in these classrooms. 
Both classes were inquiry-oriented in the sense that definitions, theorems, and proofs were 
treated as something to be constructed from intuitive meanings rather than pre-existing 
knowledge to be presented and internalized. Students were expected to play an active role in 
learning the materials by raising conjectures, justifying their own arguments, and debating 



contrasting claims within their discourse communities. Comparison of the two courses 
revealed that neither course dedicated time to “teaching logic” in isolation, but rather used a 
more localized or integrated approach to fostering logic learning. In line with the inquiry-
oriented approach, the way the professors addressed logic guided students to explicitly 
examine logical structure such that they could reflect and guide their own logical activity.  

Our data analysis followed a “grounded” approach (Strauss & Corbin, 1998) not in the 
fullest sense of that coding scheme, but in the sense of (1) developing a localized theoretical 
account that characterized the instruction and (2) testing such accounts by a constant 
comparative methods. We intend this model to appropriately characterize the instructional 
approach across different mathematical topics, logical structures, metaphor types (Dawkins, 
2009), and the differing structures of the two inquiry-oriented classrooms (Dawkins & Roh, 
2011). From our observations of teaching and learning episodes across the two classrooms, 
we abstracted a general model of teaching logical structure through metaphor or story. While 
two professors’ practice does not constitute a large sample size, the model was vetted against 
a larger number of instructional episodes throughout the two classes (and multiple semesters). 
Due to space limitations, we present the general model in terms of a “thought experiment” in 
the sense of Freudenthal (1973, 1991) and a case study of one students’ metaphorical 
reasoning about the logical (or meta-theoretical) structure of real analysis content.  

The nature of the instructional practice we want to study poses a great methodological 
challenge because it is localized in the sense that logic was not taught as a topic, but rather as 
auxiliary to real analysis topics. Thus while the professors employed these tools throughout 
the semester, it is hard to separate the influence of that aspect of instruction from the range of 
other ongoing instructional activities related to the same mathematical topics. To trace the 
pedagogical influence of the metaphors, we must observe students’ spontaneous and clear use 
of the metaphors for their mathematical activity. To avoid merely anecdotal evidence despite 
the methodological challenges, we sought “critical events” (Maher & Martino, 1996) from 
the two classes that satisfied the following criteria: 

C1. The students must spontaneously engage in metaphorical reasoning about logical 
structure or make a spontaneous mathematical (re-)discovery via metaphorical 
reasoning.  

C2. The students must elaborate the metaphor so as to influence their perception of the 
mathematical situation beyond simply using metaphorical “language.”  

C3. The students must show evidence that they are reasoning about logical or meta-
theoretical structure.  

We shall justify how our featured case study satisfies each of these analytical criteria.  
Results 

Thought Experiment 
To avoid what Wagner (2006) called “transfer by abstraction,” students must somehow be 

led to explicitly examine the logic of their own mathematical activity. We claim both of the 
professors we studied successfully supported students’ ability to reason about logic by the 
following instructional method. The instructor provided students with a metaphor that 
embeds the logical and/or quantitative structure within a quasi-real world context. The class 
explored the metaphor in conjunction with mathematical activity to induce a metaphorical 
mapping between the elements within the mathematical and metaphorical contexts. The 
context or story must be carefully created to display and motivate the logical structures within 
some frame of reference other than linguistic logic (such as deontic or rule-based reasoning 
does in the Wason, 1968, card task as discussed in Evans, 2005). That is to say the metaphor 
must have resonance, meaning it allows deep elaboration of the connections between the two 
domains (Black, 1962, 1977 as discussed in Oehrtman 2003, 2009). This distinguishes such 
instruction from that which Dubinksy & Yiparaki (2000) criticized where a mathematical 



statement’s logic is simply compared to the logic of an everyday statement (which their 
research shows to be unreliable as a source of appropriate logical structure).  

The metaphor then establishes a logical schema into which novel mathematical tasks may 
be assimilated. On such tasks, students assimilate the interrelationships and structure of a task 
into the schema of the metaphorical context, matching the known conditions that maximize 
transfer between superficially dissimilar tasks (Kimball & Holyoak, 2000). Figure 1 displays 
this form of instruction’s intended avenue for students' logical transfer. In line with Wagner 
(2006), transfer occurs when a student has "constructed a framework of knowledge that was 
sufficiently complex [rather than abstract] to permit her to structure the two situations 
similarly" (p. 64). This differs from teaching formalized logics because it assumes students 
will see logical structure within the mathematical context rather than abstracted from it.  

 
Fig 1. Pathway to transfer under metaphorical logical instruction. 

Case study of Vincent’s use of the Platypus metaphor 
The real analysis class featured here was taught at a mid-sized, research university in the 

United States in the spring of 2008. A mathematician specializing in differential geometry 
taught the course. She had taught this real analysis at least 2 previous times and was awarded 
multiple teaching awards based upon her students’ nominations. Most of the students were 
mathematics majors, a large portion of whom proceeded to pursue graduate degrees in 
mathematics or related sciences. The course met for 75 minutes twice per week over the 
course of a 15-week semester. The first author was present as an observer during all class 
meetings and conducted weekly task-based interviews with a small group of volunteers from 
each class. The researchers’ interpretations of the professor’s pedagogical intentions were 
vetted against her own articulations during bi-weekly interviews.  

The professor used a large number of examples to guide students' reasoning about 
constructing definitions and theorems. She paid particular attention to the common student 
misconception that sequences only converge or tend to infinity if they are monotonic. To 
address this issue, she introduced the examples Penguin -{1,1,2,1,3,1,4,1,5,1…} and Platypus 
- {2,1,4,3,6,5,8,7…}. While she agreed that both appeared to tend to infinity, they both 
displayed strange properties. She specifically stated that biologists had to decide whether 
Platypus was a mammal because it did have hair, but it laid eggs instead of having live 
young. Ultimately, biologists agreed that platypus was a mammal just like the Platypus 
sequence does tend to infinity. Penguins look like they have fur, but they are birds and not 
mammals. Similarly the Penguin sequence is unbounded, but does not tend to infinity.  
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Once the class ratified a definition for a sequence tending to infinity, they verified that 
Platypus satisfied the definition and Penguin did not. The professor then provided the 
following true/false questions for the students to consider in groups and then discuss as a 
class (note that if a sequence tends to infinity or negative infinity, then it "properly 
diverges"): "If , then {xn} is unbounded and increasing.” and “A sequence 
properly diverges if and only if it is unbounded." The students pointed out that the first 
statement is false because of platypus and the second statement "only works in one direction" 
because of penguin. Members of the class used the name platypus to refer both to the 
sequence itself and to its role as an atypical example of a sequence that tended to infinity. In 
contrast to prototypes, which are key examples that display the "standard" properties of a 
class of objects, we use the term wedge to denote examples that distinguish easily conflated 
properties. The wedge examples described in this paper are also different from the notion of 
boundary examples (Watson & Mason, 2001), which are examples used to make clear why a 
condition is required to define a concept by showing the definition would fail to describe the 
concept without the condition. While boundary examples relate a property and the category it 
describes, wedges are intended to relate multiple properties or definitions to each other.   

For instance, the absolute value function is a standard wedge between the properties of 
continuity and differentiability. Platypus became the class' wedge between monotonicity and 
tending to infinity. Penguin acted as a wedge between unboundedness and tending to infinity. 
Students consistently referred to the sequences by their animal names without having to 
explain indicating the names became taken-as-shared.  

An interview with Vincent two weeks later revealed he held a (nonstandard) personal 
concept definition (PCD) of proper divergence: "For every … pick some term 

€ 

xK  right 
here, then for every term… 

€ 

n >K , 

€ 

xn > xK . So all the 

€ 

xn 's got to be in that interval [ ] 
here." This definition would imply that sequences tending to infinity are monotone. However, 
when Vincent tried to describe Platypus, he recalled because of the name that it was a strange 
example of a sequence that tended to infinity. He thus modified his PCD to say you can only 
use even values of K. He also stated directly that he had previously thought sequences 
tending to infinity should be monotone, but that Platypus rendered that false.  

When the interviewer asked Vincent one month later about various example sequences, 
Penguin was presented first. Vincent began listing properties of the sequence before citing its 
metaphorical name. When presented with Platypus, he immediately named the sequence 
explaining it was a “weird looking mammal.” With some work, he elaborated the metaphor to 
say that mammals were sequences tending to infinity, but Platypus did so in a weird way. 
With some hesitance Vincent acknowledged that Platypus meant that not every sequence 
tending to infinity was monotonic. He restated his idiosyncratic PCD and noted again that 
Platypus limits the indices that “will work.” It appeared that he “rediscovered” the distinction 
between the two properties via Platypus acting as a wedge.  

Discussion 
The Platypus and Penguin metaphors allowed the professor to simultaneously refer to the 

sequences themselves and their logical role as wedges between oft-conflated properties. The 
metaphors were localized tools for drawing attention to the logic of sequences categorization. 
The logical metaphor (Dawkins, 2009) induced a biological structural metaphor comparing 
the classification of sets to the classification of animals in biology. Vincent’s repeated 
expression of the targeted misconception validated the professor’s instructional intervention. 

We argue that this episode satisfies all of our analytical criteria (denoted above by C1-C3) 
for evidence that the metaphor directly contributed to Vincent’s mathematical learning. 
During the second interview, Vincent spontaneously recalled the sequence names and 
appeared to discover anew that sequences tending to infinity need not be monotone (C1). 
Without the metaphor, Vincent might likely have described Platypus as not tending to infinity 



according to his PCD. However, the name seemed to fix in his mind the fact that Platypus 
was a non-standard example of tending to infinity. Because he reevaluated his mathematical 
understanding, we claim that Vincent elaborated the metaphor beyond simple language use 
(C2). Third, though Vincent began the discussion in the latter interview describing 
sequences, he shifted to categorizing classes of sequences before actually relating sequence 
properties to one another. While previous research (Alcock & Simpson, 2002; Edwards & 
Ward, 2008) indicates that many students use definitions to describe examples, Vincent 
shifted to using examples to relate properties. This constitutes a sophisticated shift in the 
nature of his mathematical activity. Because he shifted from examining Platypus to the 
logical activity of relating properties, we claim that he was directly reasoning about the logic 
of sequence classification (C3).  

This final claim also reveals how the instruction in this episode exemplifies the model 
described in our thought experiment. The metaphor guided Vincent to shift his attention to 
logical structure while still examining the particular properties of the mathematical objects at 
hand. His attention to the logical role of Platypus as a wedge allowed him to examine and 
assess his mathematical reasoning about particular sequence properties and his understanding 
of their definitions. Rather than abstracting his attention away from particular examples to 
talk about sequence properties, the metaphor elevated Platypus from a (non-)example of 
certain classes to a wedge with meta-theoretical significance. Figure 2 portrays Vincent's shift 
from seeing properties describing sequences to sequences relating various properties.  

 
Fig 2. How metaphors shifted Vincent's reasoning about example sequences. 
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 The form of instruction described here provided a valuable tool in the inquiry-oriented 
real analysis classrooms we observed for bringing logical structure into the consensual 
domain. The metaphors allowed students to examine and assess the logic of mathematical 
arguments. The method is somewhat limited because the metaphors model particular logical 
structures (such as wedges) rather than comprehensive logical systems such as propositional 
logic. They were generally used to support students’ reasoning about problematic logical 
structures. We think one main analytical contribution is to draw attention to the issue of 
whether students are reasoning about logic at all. Future studies on students’ logical 
reasoning should carefully delineate whether they are observing the logic of students’ 
reasoning or students’ reasoning about logic.  
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