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In this work, we examine students' ways of thinking when presented with a novel linear 
algebra problem. We have hypothesized that in order to succeed in linear algebra, students 
must employ and coordinate three modes of thinking, which we call computational, abstract, 
and geometric. This study examines the solution strategies that undergraduate honors linear 
algebra students employ to solve the problem, the variety of productive and reflective ways in 
which the computational mode of thinking is used, and the ways in which they coordinate the 
computational mode of thinking with other modes. 
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Purpose and Background 
The field of linear algebra has recently attracted much attention in the literature; many 

studies have examined students’ difficulties in linear algebra (e.g., Carlson, 1993; Sierpinska, 
2000). By contrast, this study examines students’ abilities. We focus on the ways in which 
students are able to think productively, in order to provide a model of successful thinking in 
linear algebra. In particular, we examine the productive ways students use computational 
thinking to reason through a novel problem about basis. 

We have adopted a three-fold taxonomy of ways of thinking in linear algebra. The ways 
of thinking we have identified, which we refer to as abstract, computational, and geometric 
thinking, are roughly parallel to those of Sierpinska (2000) and Hillel (2000). Abstract 
thinking is indicated by working with vectors as formal objects characterized by the vector 
space axioms, or by statements of definitions and theorems in coordinate-free language. 
Computational thinking is typically indicated by explicit reference to particular algorithms, 
such as row reduction or the Gram-Schmidt process, and representation of vectors in terms of 
their components. It includes not only carrying out a computation, but also choosing the 
appropriate computation to solve a particular problem and understanding what the result of 
that computation means in context. Finally, geometric thinking is indicated by the use of 
language such as line, plane, ray, angle, length, or intersection, and geometric knowledge 
such as the Pythagorean Theorem. Usually this language is used in the context of R2 or R3, or 
by analogy with one of these spaces.  

We argue that in order to be successful in linear algebra, students must come to be able to 
use and coordinate each of these three ways of thinking; we follow Hillel (2000) in 
attributing many student difficulties to their trouble switching between, or relating, these 
three languages. These ways of thinking are not sharply demarcated; powerful tools for 
reasoning can be found at their overlaps. This study was designed to address the following 
research questions: What strategies do students use to solve a novel problem (detailed 
below)? What are the uses, affordances, and constraints of each mode of thinking? In what 
ways do students coordinate these modes of thinking? 

Design, Settings, and Methods 
 Eight first-year undergraduate honors linear algebra students from a large public 

university in the southwestern United States volunteered to participate in individual clinical 
interviews, conducted near the end of the course. The interview centered on the “Michelle 
problem”: 



Michelle would like to create a basis for R4. She has already listed two vectors v and 
w that she would like to include in her basis, and wants to add more vectors to her list 
until she obtains a basis. What instructions would you give her on how to accomplish 
this? 

Based on a prior study (Wawro, Sweeney, & Rabin, 2010), this problem was expected to 
provide rich opportunities for each mode of thinking. The problem was initially presented 
abstractly, as above, and students were encouraged to describe a general method by which the 
problem could be solved. After this, specific vectors were given, and the students were asked 
to try using their method on these given vectors. We asked a number of follow-up questions 
to probe students’ intuition and solution procedures, whether students could formulate their 
solution procedure in an algorithmic way, and whether they could justify their procedure. 

The interviews were videotaped and transcribed, and students’ written work produced 
during the interviews was retained. These recordings, transcripts, and written documents 
formed the corpus of data analyzed in this study. Using grounded theory (Strauss & Corbin, 
1994), we coded students’ utterances as instances of abstract, computational, or geometric 
thinking, referring to written work for confirmatory evidence, and documented the ways in 
which students used each way of thinking. 

As we began analyzing the data, we noted a preponderance of computational thinking. 
Since we saw a much more balanced use of modes of thinking in the pilot study, this result 
was unexpected. We were thus led to ask, in addition to the initial research questions, why 
students used computational thinking so much, and in what productive ways they used it. 

Results 
One result from our data is the surprising variety of ways in which students were able to 

productively use computational thinking. Computational thinking is often maligned in the 
literature and in educators’ opinions. The common perception is that computational thinking 
is exclusively procedural, that students simply wish to feed numbers unreflectively into an 
algorithm, and that they commonly make significant errors while doing so. This analysis 
highlights, by contrast, the productive and reflective ways students can use computational 
thinking in linear algebra. For example, using computational thinking, students were able to 
generate strategies for choosing additional vectors, produce proofs of their methods, and get 
“un-stuck” when they encountered roadblocks.  

Generating strategies 
Computational thinking can inspire the creation of strategies for choosing vectors. Evan 

(all names are pseudonyms), for instance, initially proposed a strategy of pure guess and 
check. The interviewers asked him if there was a strategy he could use to make informed 
guesses: 

Evan: Well, I’d first, I’d reduce the first, these two vectors [i.e., v and w] and let – so 
I’ll just make a 4x2 matrix. And to reduce – If I can have two pivotal columns, so 
like, for these two, because they are linearly independent, so sure I can have two 
pivotal columns. And I can just pick another two that has different pivotal columns 
[sic: he means rows], like in the third column or fourth column, to get one. 

When asked for a way to make better guesses, he suggested row-reducing v and w to see 
where the pivots were, then choosing standard basis vectors to provide the missing pivots. 
Thus, by using computational reasoning to think about the test his vectors must pass, he was 
able to engineer vectors that are guaranteed to pass it. Although he does not formulate his 
reasoning as a proof or justification, it essentially serves as such. 



Computational proofs 
We had anticipated that the justification questions would prompt abstract thinking. 

However, we found that several students were able to produce fully valid proofs using 
computational thinking alone. Bob, for example, produced a proof by analyzing his 
algorithm. His strategy was similar to Evan’s; he row-reduced the two given vectors, then 
used standard basis vectors to supply the missing pivots. He argued abstractly that the new 
vectors will be independent, and then justified this claim computationally (transcript edited 
for length and clarity): 

Bob: Well, by the definition of linear independence, their matrix has to row-reduce to 
the identity. All the columns will be pivotal. So, by using these facts about linear 
independence and pivotal columns, this procedure is a way to find two more columns 
that will be pivotal columns independent of the other ones already found. With the 
two vectors she already has, she has two pivotal columns here, and they both 
represent pivotal ones. It’s just a way to find the other two columns that won’t form 
the same pivotal row as another one, so that they’ll all be independent. 

This technique of proof by analysis of an algorithm is a particularly valuable way of 
constructing formal justifications. Many textbook proofs in linear algebra proceed in a similar 
fashion. The fact that students are capable of producing such justifications is perhaps an 
argument for teachers to highlight this method when discussing proof techniques. 

 
Roadblocks and resolutions 
Students often encounter difficulties and “get stuck” when solving a problem. We initially 

conjectured that one way of getting around such roadblocks would be for students to 
transition to another way of thinking. However, we found that in many situations where 
students encountered difficulties relating to their computational thinking, they were able to 
resolve the difficulty by continuing to think computationally. 

Greg is an example of a student who encountered such a roadblock. His solution method 
was to guess a vector to potentially include in the basis, then show that it would work by 
showing “that it’s not a linear combination of these two [i.e., v and w].” He augmented the 
two given vectors with a vector he guessed and proceeded to row-reduce the resulting matrix. 
He hit a roadblock when the third row of his matrix reduced to [0 0 | -15], saying, “I’m 
actually kinda confused about what this tells me. Did I make a mistake?”  

It appeared that Greg is used to rows of the form [0 0 | 1] signaling that something bad 
has happened. However, he was able to step back and reason (computationally) about this 
result, coming to the conclusion that it was the appropriate one: 

Greg: All right. Well actually, if I continue row-reducing this, then I would get a 1 
here... then that would make it unsolvable. So then I suppose ... Yeah. Okay. And 
then, that would mean that this can’t be a linear combination of these two. So then, 
it’s not in the span. 
Int: And is that good or bad, for purposes of this problem? 
Greg: That’s good. This could be an additional vector for a basis. 

The fact that the system he had constructed was “unsolvable” made him second-guess 
himself for a moment, but by reflecting on the framing of the algorithm, he was able to 
realize that this is exactly what he had wanted. By framing we mean the context in which the 
algorithm is applied; its goals and the meaning of its inputs and outputs. Reasoning about the 
framing of an algorithm in this way is a productive overlap of the computational and abstract 
modes of thinking. 

Our talk will explicate a number of other findings, including an elaboration of students’ 
productive uses of the other two ways of thinking. Additionally, we will discuss at greater 



length the ways in which students coordinated and transitioned between multiple ways of 
thinking.  

Conclusion 
 Our data contribute to the reconceptualization of procedural knowledge as a useful 

and productive mathematical resource (see, e.g., Star, 2005). Additionally, they show that 
computational thinking is more varied, flexible, and sophisticated than the common 
perception. We have presented evidence of students producing sophisticated strategies for 
choosing vectors, justifying their approaches, and resolving problems they encounter through 
the use of computational thinking. This evidence of student ability provides direct 
recommendations for pedagogical practice in linear algebra. 

This study contributes to the literature by documenting student abilities in linear algebra. 
While it is true that these are advanced students, and thus our results may not generalize to 
the broader population of undergraduate linear algebra students, it is still useful to know what 
students are capable of. Although they are honors students, they are still freshmen, so it is 
reasonable to expect that their abilities are within the range of potential development of other 
students. Our study provides evidence that the fog need not always roll in (Carlson, 1993). 

 

Discussion Questions 
1. In what other ways might computational thinking be useful in linear algebra? in other 

areas of undergraduate mathematics? 
2. How distinct are the three modes of thinking? Should they be thought of as separate 

but coordinated, or as shading into one another at their boundaries? 
3. What other overlaps between the three modes of thinking might be expected? 
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