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In this study, we open up discussions regarding one of the unexplored aspects of 

mathematical sophistication, the inductive work of conjecturing. We consider the following 
questions: What does conjecturing entail? How do the conjectures of experts and novices differ? 
What characteristics, behaviors, practices, and viewpoints distinguish novice from expert 
conjecturers? and What activities enable individuals to make conjectures? To answer these 
questions, we conducted a qualitative research study of eight participants at various levels of 
mathematical maturity. Answers to our research questions will begin to provide an 
understanding about what helps students develop the ability to make mathematical conjectures 
and what characteristics of tasks and topics may effectively elicit such behaviors, informing 
curriculum development, assessment, and instruction. 
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Background 

 
Much of contemporary research is concerned with helping students become more adept at 

problem solving and learning mathematical ideas.  In fact, an ongoing concern is empowering 
students to develop deep understanding of mathematical concepts, instead of only developing 
shallow procedural proficiency; that is, we want students to be able to apply their knowledge to 
solve new problems. 

From a sociocultural perspective (Bauersfeld, 1995), we argue that this challenge can be 
in part met by understanding the practices of the mathematical community.  As we identify those 
practices that enable mathematicians to do mathematics and find ways to instill these in our 
students, we will empower them mathematically. 

Many researchers have argued this point.  Citing Cobb, Bowers, Lave, and Wenger, 
Rasmussen et al. (2005) argued that learning mathematics is synonymous with participation in 
mathematical practices; in other words, many of the activities used by the mathematical 
profession to build new mathematical artifacts are needed by learners to acquire those same 
artifacts. Carlson and Bloom (2005) argued that successful problem solving involves more than 
content knowledge; it requires cognitive control skills, methods, and heuristics. It is these 
mathematically sophisticated behaviors (such as conjecturing, testing, and modeling) that 
empower problem solvers to correct their own models and arrive at solutions (Moore et al., 
2009).  

Researchers have also observed and evidenced this.  Seaman and Szydlik (2007) noted 
that even given ample time and resources, preservice teachers failed to relearn forgotten, 



common, elementary school mathematics concepts and skills because they lacked Mathematical 
Sophistication, that is habits of mind and practices of the mathematics community that would 
have empowered them to acquire mathematical knowledge; these practices include: making 
sense of definitions, seeking to understand patterns and structure, making analogies, making and 
testing conjectures, creating mental and physical models (examples and nonexamples of things), 
and seeking to understand why relationships make sense.  Schoenfeld (1992) noted something 
similar, namely that novices lacked the skills and behaviors characteristic of expert 
mathematicians, skills which go beyond simple content knowledge, such as: attending carefully 
to language, building models and examples, making and testing conjectures, and making 
arguments based on the structure of a problem.  Thus, mathematical sophistication is not only 
critical for prospective mathematicians, but for anyone who must engage in mathematical 
learning and problem solving. 

In a recent study, Szydlik, Kuennen, Belnap, Parrott, and Seaman (2012) developed a 
measure of basic levels of mathematical sophistication and in doing so, found evidence that 
mathematical sophistication can be developed during the course of a class.  So, in order to 
empower students to more effectively learn mathematics, we must understand the practices of the 
mathematical community and find ways for them to acquire these practices. 
 The body of mathematical knowledge develops as professional mathematicians engage in 
a variety of activities, most of which could be classified as either inductive or deductive work.  
The inductive work of mathematics involves activities that generate new mathematical ideas; 
through investigation, exploration, or study, mathematicians create conjectures (i.e. new and 
unproven hypotheses).  Through deductive work, mathematicians take assumed mathematical 
ideas (axioms) and proven mathematical facts (theorems) and either prove or disprove those 
conjectures.  Proven theorems then become new artifacts in the mathematical knowledge base. 

In this study, we have chosen to focus our efforts on the mathematical activity of 
conjecturing for three main reasons.  First, conjecturing is critical to the field of mathematics; it 
represents the potential mathematical knowledge of the field.  Second, conjecturing tends to be a 
neglected aspect of mathematics classes and enculturation.  Most lower-level mathematics 
courses focus on understanding and applying known theorems.  At the upper-level, most 
attention is devoted to proofs and logic because of their complex and problematic nature, thus 
focusing predominantly on understanding content, testing conjectures, developing logical 
arguments, developing counterexamples, and writing deductive arguments--a focus mirrored by 
the research literature (Weber, 2001; Selden & Selden, 2003; Alcock & Weber, 2005).  Third, (in 
theory) conjecturing is more accessible to undergraduates and novices because it is the 
generation of ideas which need not be certain; it is hypothesis-making and does not require all 
the intricacies that accompany deductive work. 

This paper focuses on answering the following question: What does mathematical 
sophistication look like for conjecturing?  To answer this question, we consider the following 
questions: What does conjecturing entail? How do the conjectures of experts and novices differ?  



What characteristics, behaviors, practices, and viewpoints distinguish novice from expert 
conjecturers? and What activities enable individuals to make conjectures? 
 

Methodology 
 

To explore conjecturing, we conducted a qualitative research study, during winter 
semester 2012, in a mathematics department at a public university.  We purposively selected 
eight participants at various levels of mathematical maturity: two undergraduate students (novice 
mathematicians), Scott and Laura; three graduate students (apprentice mathematicians), Ann, 
Noah, and Charlie; and three research mathematicians (i.e. expert mathematicians) Sam, Josh, 
and Lisa. Student participants were selected from a list of volunteers, who were enrolled in one 
of two specific courses; undergraduate students were taking a 200-level introduction to proofs 
course, while graduate students were enrolled in a graduate course in advanced Euclidean 
geometry, which incorporated a conjecturing component.  

Participants were purposively selected to represent diversity in gender, background in 
Euclidean geometry, and area of expertise.  Student participants were selected for diversity in 
their ability (high/medium/low) to do authentic mathematical work, as judged by their instructors 
and (in the case of graduate students) conjectures produced during conjecturing tasks. 
Mathematicians were selected to represent diverse areas of mathematical expertise, which 
included: probability theory, graph theory, and dynamical systems.  
 
Data Collection 

Data collection revolved around each participant’s involvement in one individual 
conjecturing task in the area of Euclidean geometry. Participants were presented with a hardcopy 
of the task and given ample time and resources to work on it, then (after a break) participated in 
an interview regarding their experience, approach, and conjectures. 

The task was intended to create a context where participants could do inductive work 
leading to the generation of conjectures.  The task provided mathematical definitions for three 
new types of quadrilaterals; one faculty participant had previously encountered one of these 
quadrilaterals, otherwise all three definitions were novel for each participant.  Participants were 
allowed to explore these definitions, with the goal of writing as many conjectures about them as 
possible; they were given as much time as they desired, with the exception of Josh, whom we cut 
off after about two hours.  

During the task, participants had open access to the following resources: a ruler and 
compass; various colored and regular writing instruments; paper; a list of Euclidean postulates, 
common notions, definitions, and propositions; a glossary of common geometry terms; and 
GeoGebra, a free dynamic software program for constructing, measuring, and manipulating 
dynamic geometric objects.  Researchers were also available throughout to answer questions on 
the task and definitions or to help with software usage. 



After the task, each participant took a break, during which we prepared for the interview 
by discussing our observations and the participant’s conjectures and making adjustments to the 
interview questions.  The subsequent interview focused on: a) clarifying any behaviors and 
thinking that were not discernible by outward observation, b) understanding the participant’s 
experience and perspective, c) understanding the written conjectures, and d) gaining details about 
the conjecturing process. 

Data consisted of video recordings, written work, and observation notes.  We took three 
video recordings during each task and subsequent interview: a) a video taken from the side, of 
them working on the task; b) a top-down recording of their written work; and c) an internal 
recording of their computer work.  A synchronized compilation of these three video recordings 
served as the primary data source.  Secondary data sources included each participant’s written 
work and conjectures along with our observation notes taken during each task and interview. 
 
Data Analysis 

We analyzed the data using grounded theory techniques (Strauss & Corbin, 1998).  
Beginning with Scott (low-level novice), we independently reviewed the coordinated video feeds 
and made time-stamped annotations describing his behaviors throughout the task.  Then we 
compared our annotations and negotiated differences, using the video and secondary sources of 
data to triangulate our observations.  We began clustering our annotations around common 
themes to form initial categories of behaviors. We utilized our results to inform our next 
interview and observations (of Laura). 

We repeated this same process working upward (by experience and level) through our 
participants, by next meeting with Laura (medium-level novice) and then Ann (low-level 
apprentice).  After meeting with each participant, we coded independently by writing time-
stamped annotations and applying our emerging categories; doing so, we modified our categories 
as appropriate to accurately describe the data; each time we made changes, we back-coded prior 
participants to examine how the framework reflected the data. 

By our meeting with Noah (medium-apprentice), we noticed some broad, over-arching 
themes, so we independently synthesized our analyses of each individual into a vignette or 
synopsis, describing for each case (participant) the characteristic of each theme.  We continued 
this process, independently writing, then collaboratively negotiating a final synopsis for each 
participant.  As we compiled these synopses, we did a cross-case analysis, examining differences 
and similarities across the different levels of expertise.  We herein present some of these 
differences as dimensions of the mathematical activity conjecturing. 
 

Results 
 

The distinction between novice, apprentice, and expert conjecturer is not a clear linear 
one, but varies by each of the five dimensions listed in table 1.  These include: a) overall 
process, the process and problem-solving approach used during the task; b) objects created for 



investigation, the characteristics of and individual’s view of objects created during the 
investigation; c) nature of observations, describing the things they noticed, paid attention to, or 
looked-for; d) qualities of written conjectures, mathematical and verbal qualities of a conjecture; 
and e) qualifications of written conjectures, the threshold of conviction required to consider an 
idea worthy to be considered a conjecture.   

The behaviors listed for each dimension in table 1 represent the extremes observed.   
Each of a dimension’s behaviors and characteristics range from unsophisticated to sophisticated 
by how they did or did not empower the individual to make conjectures. Other behaviors were 
noted that could be considered along a continuum, representing different degrees of 
sophistication.  Furthermore, individuals exhibited combinations of these characteristics. 

  
Discussion 

 
Learning to conjecture appears to entail a variety of skills, knowledge, and values.  It is 

affected by logic, content knowledge, practices of observation, experience with mathematical 
language, and persistence.  Indeed, conjecturing appears to rely or draw upon many of the 
characteristics Seaman and Szydlik (2007) and Schoenfeld (1992) identified.  Because of this 
 
Table 1: Sophisticated and Unsophisticated Characteristics and Behaviors by Conjecturing 
Dimension 

Dimension Unsophisticated Sophisticated 

Overall process Clear linear approach: make sense of 
task, explore, write conjectures. 

Random manipulation to stumble 
upon something. 

Complex non-linear approach. 
Incorporation of other 

mathematical knowledge. 
Systematic analysis to discover or 

scrutinize. 
Scaling the problem in or out. 

Objects created 
for investigation 

Single static “prototype” assumed 
representative. 

Errors in constructions. 

Multiple examples considered and 
required. 

Dynamic view of situation and 
examples. 

Nature of 
observations 

Reliance upon appearance “looks 
like...” 

Naive acceptance of definitions. 
Focus on superficial properties (e.g. 

orientation, location, etc.). 

Consideration of degenerate 
(undefined) cases. 

Measuring or observing precise 
criteria and properties. 

Consideration of causal or 
covariational relationships. 

Qualities of 
written 
conjectures 

Perspective-dependent statements that 
do not present clear, testable, 
mathematical criteria. 

Precise, testable statements. 
Conventional use of math 

terminology. 



Unconventional use of math terms. 
Reliance on common vernacular. 

Inclusion of both general and 
special cases. 

Qualification of 
conjectures 

If you think it or see it once, it is a 
conjecture. 

Level of conviction/scrutiny to be 
considered a conjecture. 

Must be an interesting/non-trivial 
result. 

Evidenced by multiple cases or a 
specially-designed dynamic 
construction. 

 
and its accessibility, it may serve as a type of mathematical activity in which some of these 
characteristics can be discussed and developed.  For example, the articulation of conjectures 
provides an opportunity to discuss logic and mathematical language; thus perhaps conjecturing 
could provide an earlier forum to deal with these topics and acclimate students earlier than a 
transition to proofs course. 

One question at the front of our mind is the context.  Because of its constructive nature 
and the many physical and virtual tools available, Euclidean geometry was a natural context for 
exploration and conjecturing.  How could it be incorporated into other areas of mathematics? 

In the end, we are left with several unanswered questions: How can conjecturing be 
fostered and developed? To what extent is conjecturing tied to content area?  How can 
conjecturing be integrated into other branches of mathematics?  and How does experience with 
conjecturing affect learning and success in mathematics? 
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