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This paper describes preliminary results of a study aimed at examining the effects of working 
in cooperative groups on acquisition and development of proof skills. Particular attention 
will be paid to the varying tendencies of students to switch proof methods (direct, induction, 
contradiction, etc) based on their level of proof expertise. Namely, as students progress from 
novice to expert provers, they tend to change proof methods more frequently until they reach 
the final stages of development (Hart 1994). 

Key words: Transition to Proof, Proof Writing Expertise, Proof Methods 

Introduction  
Although proof is essential to studying mathematics, much research in the past two 

decades shows that students struggle with constructing and validating proofs (Almeida, 2000; 
Harel & Sowder, 1998; Levine & Shanfelder, 2000, Moore, 1994; Selden & Selden, 2003a, 
2003b; Weber, 2001; Weber, 2003). Several innovative course structures have been 
introduced for so-called bridge courses (Almeida, 2003; Bakó, 2002; Grassl & Mingus, 
2004), but little dedicated research has been done on the effectiveness of such courses. 
However some common themes have emerged about the necessity for and efficacy of active 
learning strategies, and there is a general trend away from lecture and toward more student-
centered models models. In particular, this can be seen within the Modified Moore Method 
community (McLoughlin, 2010).  

Cooperative learning (CL) is one such model. “CL may be defined as a structured, 
systematic instructional strategy in which small groups work together to produce a common 
product” (Cooper, 1990). There are five specific features that, when combined, distinguish 
CL from other active and collaborative learning strategies: positive interdependence, 
individual accountability, student interaction, attention to social skills, and teacher as 
facilitator. While the efficacy of CL has been researched (Johnson & Johnson, 1991), the 
majority of this research has been undertaken with precollegiate populations.  

Studies done on CL and active learning in the context of physics instruction (Deslauriers, 
et al, 2011; Heller & Hollabaugh, 1992; Heller, et al., 1992) give hope that CL could be 
effective in helping students acquire and develop their proof skills. This paper looks at some 
of the preliminary results of a study exploring the relationship between CL and proof-skill 
development. Specifically, the study was designed to examine how working in a CL seminar 
environment affected 1) students’ attitudes about proof, 2) students’ ability to construct 
proofs, and 3) students’ abilities to validate student-generated arguments. The second of these 
will be addressed in this paper. 

Hart (1994) compared expert and novice proof writers through use of a proof test. He 
categorized 29 undergraduate math majors by their level of proving expertise using three 
specific tasks from the test, and rated the students in one of four levels: Level 0: pre-
understanding, Level 1: syntactic understanding, Level 2: concrete semantic understanding, 
Level 3: abstract semantic understanding (p. 56). He then examined the students’ individual 
proof production processes noting similarities that arose among students at the same level of 
understanding. The mathematical context of Hart’s study, abstract algebra, differed vastly 
from that of the study addressed in this paper, but some generally applicable findings were 
reported.  

He noted that it is important not to try to get novice provers to perform like expert provers 
all at once; there is a continuum of expertise that must be traversed, even though the 



progression across it is often not smooth. In particular, he noted that expert provers switch 
proof methods less often than the most novice provers, but that the tendency to change plans 
increased between levels at all but the final step (pp. 59-60). This study examined whether a 
cooperative learning environment would enable students to become more expert provers and 
whether this would be marked by a similar change in tendency to change plans. 

 

Methods 
The subjects for this study were seven “seminar” students (five male, two female) and 

three “comparison” students (two male, one female). All students were undergraduates at a 
large, public university with a declared major or minor in mathematics.  

All subjects took pre- and post- assessments of their proof construction skills via three 
proof prompts in basic number theory. The assessments of the seminar students were 
conducted in the presence of the researcher, and those subjects were asked to think aloud as 
they attempted to construct the proofs. The assessments of the comparison students were 
conducted in a group setting with each subject working independently and silently. At least 
11 weeks passed between pre- and post- assessments for all subjects. In this paper, I will 
focus on the subjects’ proof construction performance of all but one student. This particular 
student, Zach, did not make much effort on post-assessment, instead spending much of the 
interview complaining about the research methods. As a result, he performed more poorly on 
the post-assessment than he had on the pre-assessment (see Table 2). 

The three prompts listed below were presented as true theorems dealing with elementary 
number theory concepts accessible to all of the subjects regardless of prior background and 
testing varying proof skills the researcher believes occur across content areas (see Table 1). 

 Assessment Item Hypothetical Skill(s) Tested 
1. Prove: If m2 is odd, then m is odd. • Use of indirect proof methods. 

• Avoidance of a more accessible converse 
argument. 

2. Prove: If n is a natural number, then 
n3-n is divisible by 6.  

• Ability to identify pertinent subclaims and 
construct subarguments (divisibility by 2 and 
3).  

3. A triangular number is defined as a 
natural number that can be written as 
the sum of consecutive integers, 
starting with 1.  
 
Prove: A number, n, is triangular if 
and only if 8n+1 is a perfect square. 
(You may use the fact that 

.) 

• Use of the specifics of a definition to form a 
basis for a proof. 

• Ability to identify the logical implications of 
“if and only if” statements. 

• Use of previously established results (to prove 
8n+1 a perfect square implies that n is 
triangular, the result of item one needs to be 
applied).  

 Table 1. Assessment Items 
Between assessments, the seminar students met with the researcher for eight, 90-minute 

sessions during which they worked on problem sets in cooperative groups. The cooperative 
groups were consistent throughout the study and were formed to be heterogeneous based on 
gender and on skill level as demonstrated on the pre-assessment. The members of each group 
spent a few minutes at the beginning of each session getting to know each other and 5-10 
minutes at the end of each session doing group processing exercises. Both of these exercises 
facilitated the development of the social skills necessary for effective cooperative work, and 
the rotating roles (manager, explainer, skeptic, presenter) the students assumed each session 



assured their personal accountability and positive interdependence. After a brief introduction 
each session, the students worked with each other and the researcher functioned solely as a 
facilitator, encouraging the student-to-student interactions. 

The problem sets dealt with function concepts, primarily injectivity and surjectivity, and 
the seminar group did not work with number theoretical concepts. This was done so that any 
changes from pre- to post-assessment would reflect changes in the subjects’ proving skills 
independent of mathematical context.  

The video recordings of the seminar students’ assessments and of all seminar sessions 
were transcribed, and the transcriptions of the assessments were coded for instances in which 
subjects changed proof methods (direct, contradiction, contrapositive, induction) or switched 
to a different proof but returned later. All written proof attempts were also analyzed for 
correctness (0 – no progress or completely flawed, 1 – minimal progress or progress with 
substantial flaws, 2 – some progress with some flaws, 3 – substantial progress but incomplete 
or with minor flaws, 4 – correct proof). Specific errors appearing in the proofs were also 
coded according the list of common errors and misconceptions by Selden and Selden 
(2003b). 

Preliminary Findings 
Six of the seminar students showed dramatic improvement from pre-assessments to post-

assessment. Those six were all able to reprove the results proved on the pre-assessment, 
though sometimes in a different manner, and all six were able to prove additional items. 
Despite the fact that their performances on the pre-assessment did not differ greatly from 
those of the seminar students, the three comparison students, all of whom were enrolled in at 
least one proof-based course, showed no noticeable improvement on the post-assessment.  

Most of the six seminar students under consideration changed proof methods more 
frequently on the post-assessment than they had on the pre-assessment. The students who had 
the greatest change were those who had the weakest performances on the pre-assessment. 
There was only one student, Bill, who changed proof methods less frequently on the post-
assessment than on the pre assessment, and he was one of the strongest students on the pre-
assessment (see Table 2). These results mirror Hart’s (1994) findings that as students 
progress from novice to expert provers, they are more likely to change plans mid-proof, 
except at the final stage of development when that tendency decreases. This progression was 
even shown on individuals’ performances on specific tasks (see Table 3) illustrating the 
“rather unstable, irregular, developmental process” (Hart, 1994, p. 61). 

Pre-Assessment Post-Assessment  
Student Total Score Number of Switches Total Score Number of Switches 
Omar 0 0 4 1 
Ursula 0 3 8 6 
Ingrid 1 0 8 6 
Ivan 4 3 6 3 

Zach* 4 4 2 0 
Nathan 6 1 8 2 

Bill 6 5 9 4 

Table 2. Seminar Student Performance on Assessments 
The considered students who performed the best on the pre-assessment, Ivan, Nathan, and 

Bill, all had items on the post-assessment for which they changed plans less but performed as 
well or better. However, the lowest-performing students on the pre-assessment, Omar, 
Ursula, and Ingrid, all changed plans at least as many times on every item on the post-
assessment as they had on the pre-assessment (see Table 3 for examples).  



 
BILL Description of Performance Score Number of Switches 
Item 1 - pre Produced a valid proof by contradiction. 4 3 
Item 1 - post Produced a valid proof by contrapositive 4 1 
Item 2 - pre Produced a proof that n3-n is even, and 

recognized he was missing that 3| n3-n. 
2 3 

Item 2 - post Produced a proof that n3-n is even, and 
recognized he was missing that 3| n3-n. 

2 1 

Item 3 - pre Manipulated the equation , but 
the manipulations were unproductive. 

0 0 

Item 3 - post Produced a proof of both directions, but 
was missing the justification that 8n+1 is 
necessarily odd, so if it is a perfect 
square, then it is the square of an odd 
number. 

3 2 

URSULA    
Item 1 - pre Produced an empirical contradiction 

argument with use of a single example, 
m=2. 

0 1 

Item 1 - post Produced a valid proof by contrapositive. 4 2 
Item 2 - pre Did not identify subgoals, attempted a 

proof by induction, but could not get to 
conclusion even though the work was 
error-free. 

0 1 

Item 2 - post Identified subgoals, attempted a proof by 
contradiction again and successfully 
proved that 3| n3-n. Had the work to get 
2| n3-n, but did not recognize that k2-k is 
necessarily even. 

2 3 

Item 3 - pre Correctly stated givens and goals, 
attempted to use , but 
set up . Made no 
progress from there. 

0 1 

Item 3 - post Proved that n triangular implies 8n+1 is a 
perfect square. Made no progress on 
reverse direction. 

2 1 

Table 3. Student Performance on Individual Items 
Based on Hart’s (1994), these data show that not only were the seminar students able to 

improve their performances between assessments, but that they matured along the spectrum 
of novice to expert provers. Additionally, the stark difference seen between the improvement 
of the students in the seminar group and the lack of improvement of those in the comparison 
group indicates that the cooperative seminar was key to the seminar students’ improvement. 
This study suggests the need for further study along these lines in randomized comparative 
trials of the effects of cooperative learning on students’ development of proof skills. Also, 
while proof researchers often talk about proving skills as if they were not context-dependent, 
this study shows strong support that some proving abilities are truly context-independent, but 
this needs to be studied in much more detail. 



Questions 
1. What other indicators that the research subjects progressed from more novice to 

more expert provers might I look for? 
2. The tasks Hart used to define expertise levels were very different from my tasks. 

Is it reasonable to draw similarities and parallels from his work given that I can’t 
apply the levels to my own students directly? 

3. What proof skills do you think may be context-independent? Do you think there 
are any? 
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