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In this paper, we examine 26 instances in which mathematics majors attempted to write a proof 
based on an informal explanation. In each of these instances, we represent students’ informal 
explanations using Toulmin’s (1958) scheme, we use Stylianides’ (2007) conception of proof to 
identify what one would need to accomplish to transform the informal explanation into a proof.  
We then compare this to the actions that the participant took in attempting to make this 
transformation. The results of our study are categories of actions that led students to successfully 
construct valid proofs and actions that may have hindered proof construction. 
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Introduction and Research Questions 
Proving is central to the practice of mathematics. Consequently, a goal of most upper-

level mathematics classes is to improve mathematics majors’ abilities to construct proofs. 
Unfortunately, numerous studies have documented mathematics majors’ difficulties with writing 
proofs (e.g., Alcock & Weber, 2010; Hart, 1994; Moore, 1994). Research in this area has 
identified particular difficulties that students have with proof writing, such as a limited 
understanding of the mathematical concepts being studied (Hart, 1994) and not knowing how to 
begin when asked to write a proof (Moore, 1994). However, exactly how undergraduates can and 
should write proofs remain important questions in undergraduate mathematics education. 

The proofs that undergraduates are asked to write in their advanced mathematics courses 
are required to be formal. That is, these proofs are expected to begin with definitions, axioms, 
and/or appropriate assumptions and proceed deductively to reach a desired conclusion, often 
while employing logical syntax. However, although a proof that is produced is required to be 
formal, the process of producing this proof may be far less rigorous. Numerous mathematics 
educators advocate that mathematics majors should base at least some of their proofs on informal 
arguments (e.g., Garuti et al, 1996; Raman, 2003; Weber & Alcock, 2004). For instance, 
although it is not valid to infer a property about a concept by the inspection of a single example 
or a diagram of the concept, the insights gained from studying a diagram or example can suggest 
properties that may be true and useful for constructing a valid proof. 

In recent years, the literature on mathematics education has moved beyond simply 
recommending that students base proofs off of informal explanations and has begun to analyze 
the types of informal arguments that students can and cannot formalize into formal proofs (e.g., 
Alcock & Weber, 2010; Pedemonte, 2007; Pedemonte & Reid, 2011). The research questions in 
this proposal focus on the cognitive actions an individual can take to formalize an argument. In 
particular, we investigate the following: 
(i) When mathematics majors give an informal explanation for why an assertion is true but are 
unable to prove this assertion, why were they unable to do so? 
(ii) When mathematics majors successfully transform informal explanation into a valid proof, 
what actions did they take that enabled them to do so? 
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 Garuti et al (1996) introduced the construct of cognitive unity to describe a continuity 
between the informal reasons that students have for believing a mathematical assertion is true 
and the proof that they produce of that assertion, arguing that it is desirable that these two be 
linked in students’ proof productions. This is consistent with Weber and Alcock (2004) citing the 
benefits of semantic proof productions (i.e., proofs based upon informal representations of 
concepts) and Raman’s (2003) call for students to produce proofs based upon a key idea, 
meaning that students should translate personal intuitive arguments into public formal proofs. 
 There are two empirical findings that support these recommendations. The first is that 
these are consistent with the practice of many mathematicians, who also base their formal proofs 
on informal explanations (e.g., Burton, 2004; Raman, 2003). Second, case studies reveal that 
some students who engage in proof writing in this way can be highly successful (e.g., Alcock & 
Weber, 2010; Gibson, 1998). However, there are also two reasons to question the viability of 
these findings. First, as Duval (2007) emphasizes, the structure of informal explanation and 
proofs differs greatly, notably with respect to the epistemological status of assertions within 
these arguments. Others (e.g., Alcock, 2010) argue the transition between an informal argument 
and a formal proof is cognitively difficult. Second, there are also many instances in the literature 
of students not being able to prove a statement despite seeing why an assertion is true (e.g., 
Alcock & Weber, 2010; Pedemonte, 2007). This emphasizes the need for a greater understanding 
of the process of basing a formal proof off of an informal argument. 
 Recently, Pedemonte (2007) and Pedemonte and Reid (2011) advanced the discussion of 
this issue by introducing the construct of the structural distance between an informal explanation 
and a formal proof, measuring how easy or difficult it would be to translate the former to the 
latter based on the type of warrants (in the sense of Toulmin, 1958) that were employed. 
Pedemonte (2007) argued that informal explanations based on process-based generalizations or 
abductive inferences had a shorter structural distance to proof than those based on results-based 
generalizations; consequently, students who generated the former types of explanations had more 
success at proof writing. 

Theoretical Framework 
 In this study, we follow Pedemonte (2007) and Pedemonte and Reid (2011) in using 
Toulmin’s (1958) framework to analyze students’ informal explanations and formal proofs.  
Furthermore, we adapt Stylianides’ (2007) characterization of proof as a normative framework to 
highlight the gap between explanation and proof and distinguish between valid and invalid 
proofs. We view an argument as consisting of a series of inferences. Applying Toulmin’s 
framework to each inference, we say that an inference consists of a claim (the conclusion that is 
being advanced), data (the facts that support the claim), and a warrant (the reason that the claim 
is necessitated by the data). We note that as arguments are based on a series of inferences, the 
data or warrant for a new inference may have been the conclusion of a previous inference. 
 Stylianides (2007) argued that arguments should meet three standards to qualify as a 
proof; the argument should (i) use inference methods that are valid, (ii) be based upon facts that 
are true and acceptable, and (iii) use representations that are appropriate, both to the audience 
who is observing the proof and to the larger mathematical community. Within our Toulmin 
perspective, for an argument to be a proof, the warrants must be deductive, the initial assertions 
(i.e., the initial data) being used must be definitions and established facts, and the claims in the 
proof should be expressed in standard mathematical syntax. We note that informal explanations 
may not satisfy these standards. Starting points of mathematical argumentation need not be 
definitions, but may be other representations of mathematical concepts, such as a diagram. 



Warrants may not be deductive, but may be perceptual (e.g., “f is increasing because it looks that 
way on the graph”) or inductive (e.g., “the first four perfect numbers are even, so all perfect 
numbers are even”). Finally, in informal arguments, claims may be expressed informally in 
everyday language (e.g., “goes up” instead of “increasing”). 
  To illustrate, consider a hypothetical student who was informally justifying why 4x3 – x4 
= 30 has no solutions. She might say, “the graph of 4x3 – x4 seems to have a maximum value of 
27. Therefore, it will never reach 30 and no solution can be obtained”. In the first inference, the 
claim, “4x3 – x4 seems to have a maximum value at 27” is inferred from the data (the graph of the 
function f(x)=4x3 - x4) through a perceptual warrant (it “seems” that way from the graph). 
Transforming this argument into a proof would involve stating the claim more rigorously (e.g., 
“4x3 – x4 ≤ 27 for all real x”), basing it on acceptable data (e.g., the symbolic representation of 
f(x) rather than a graphical representation), and using a deductive rather than a perceptual 
warrant (e.g., using calculus to find global maxima of functions). In this study, we investigate 
what types of cognitive processes might help or hinder students to make these translations. 

Methods 
Participants. Twelve recent graduates who had majored in mathematics at a large public 
university in northeastern United States agreed to participate in this study.  Students had all taken 
an introductory proof course at this university. 
Materials. Participants were asked to construct seven proofs in calculus and seven proofs in 
linear algebra. These tasks were chosen so that they could be successfully completed either by 
syntactic or semantic reasoning, in the sense of Weber and Alcock (2004). That is, we believed it 
was plausible that students could construct a proof either by symbolic manipulation and logical 
deduction or by translating an informal explanation into a proof. 
Procedure. Participants met individually with a member of our research team for two task-based 
interviews each lasting approximately 100 minutes.  Participants were videotaped as they 
completed the proofs. They worked on each proof, one at a time, either until they produced what 
they believed was a proof, they felt they could make no further progress, or ten minutes had 
elapsed. At any time, participants were allowed to ask for a sheet containing the formal 
definition and an example object of any concept involved in the study. They were also given 
access to graphing software. After each proof attempt, participants were asked to describe their 
thought process as they worked on the proofs. 
Analysis. We first flagged each of the 168 collective proof attempts (12 students each attempting 
14 proofs) for instances of an informal argument. We defined an informal argument as an 
argument containing at least two inferences with at least one of the inferences being based on a 
warrant that was non-deductive. There were 26 such informal explanations. We analyzed each 
informal explanation and the corresponding proof (when a proof was written) using Toulmin’s 
scheme. We coded each warrant as an instance of logical deduction, perceptual reasoning, 
results-based generalization, process-based generalization (cf. Harel, 2002), abductive inference 
(cf., Pedemonte, 2007), or an abductive warrant. An abductive warrant involved where 
participants conjectured a principle that might explain why data implied a conclusion (e.g., upon 
observing that sin x and sin3 x were odd functions, guessing that the product of odd functions was 
odd). We then coded each informal explanation as being correct (i.e., each inference claim was 
true) or incorrect and each proof as being valid or invalid. Our qualitative analysis focused on the 
ways that participants failed or succeeded to transform their informal explanations into valid 
proofs by focusing on how they:  



(i) transformed their initial data from unacceptable facts (e.g., unjustified assertions, informal 
representations such as graphs) to acceptable facts (e.g., formal definitions), 
(ii) transformed arguments based on non-deductive warrants to deductive ones, 
(iii) and expressed the assertions in the informal explanation more rigorously. 

Results 
 In the presentation, we will present a list of categories for how students successfully and 
unsuccessfully attempted to transform informal explanations into proofs. To illustrate the type of 
analyses that we will discuss, we present one interesting case in detail here. P1 was attempting to 
prove that x3 + 5x = 3x2 + sin x only had a solution at x = 0. After several false starts, P1 graphs 
f(x) = x3 + 5x – 3x2 using the computer graphing software and says: 
"Yeah... [the graph] doesn't have a bump so I guess it's going to go through that region really and then only going to 
be between zero and one in a really small area and I guess I just need to prove that it doesn't cross more than once in 
that area.  Oh, and that in that area it's going to be strictly increasing and that sine is also going to be strictly 
increasing, and that it can only cross once."   
Based on these and subsequent comments, we interpreted this argument as saying that a solution 
occurs when f(x) = sin x. Since the range of sin x is [-1, 1] a solution can only occur for x values 
where -1≤f(x)≤1. She further notes that f(x) is strictly increasing in this area (or “doesn’t have a 
bump”). She concludes that the only solution to f(x) = sin x is x = 0, inferring that increasing 
functions can only intersect once. We coded the argument as follows: 
Inference 1: Claim: f(x) is between -1 and 1 for a small region. 
Data: The graph of f(x). 
Warrant: Perceptual. f(x) appears to be between -1 and 1 only briefly based on its graph. 
Inference 2: Claim: A solution to f(x)=sin x can only occur when f(x) is between -1 and 1. 
Data: (inferred) The range of sine is [-1, 1]. 
Warrant: (inferred) Algebraic-deductive. If f(x)>1 and g(x)≤1, then f(x)≠g(x). 
Inference 3: Claim: f(x) is strictly increasing in the region (described in Inference 1) 
Data: The graph of f(x). 
Warrant: Perceptual. The graph of f(x) is increasing. 
Inference 4: Claim: f(x) and sin x only intersect once in that region (described in Inference 1) 
Data: f(x) is increasing (from Inference 3) and sin x is increasing in this region. 
Warrant: (inferred) Abductive. Increasing functions can only intersect once in a region. 
We coded the warrant in Inference 4 to be an abductive warrant, or in Pedemonte and Reid’s 
words, a “creative warrant”. That is, we believe that in trying to determine why sin x and f(x) 
only intersected once in that region, P1 made the inference that increasing functions could only 
intersect once. This inference, and consequently the informal explanation in its entirety, is not 
correct (e.g., f(x)=2x and g(x)=2x + sin x are increasing functions that intersect infinitely often). 
Transforming this argument into a proof would require (a) expressing the ideas contained in the 
claim more clearly (e.g., specifying precisely what the “region” in the argument referred to), (b) 
basing the argument on the algebraic rather than the graphical formulation of f(x), (c) providing a 
deductive, rather than graphical, warrant to support Inference 1 and Inference 3, and (d) 
recognizing the warrant in Inference 4 was invalid and offering an alternative justification. 
 P1 accomplished (a), (b), and (c). She justified Inference 3, noting that f’(x)=3x2 - 6x + 5 
= 3(x+1)2 + 2, which was strictly positive. This illustrates that some students are able to provide 
deductive backing for non-deductive warrants if they are aware of proving schema to establish 
the claims in question. (Note here the schema is one establishing f(x) is increasing by showing 
f’(x)>0). She also expressed Inference 2 more rigorously. In her proof, after justifying why it was 



sufficient to show that f(x) = sin x only had one solution and demonstrating that f(x) was strictly 
increasing, she wrote, “Note f(-π/2)=-14.32<-1 and f(π/2)=4.276>1. Since -1≤sin x≤1, the 
solution can only have a real solution in the range –π/2<x<π/2”. Note that P1 changed the range 
of her original argument which would have required computing f-1(-1) and f-1(1). This 
modification also obviated the need to justify Inference 1. 
 However, P1 did not reconsider the invalid abductive warrant for Inference 4. As this 
warrant was not in the established theory of calculus (and indeed was false), the resulting proof 
was not valid. We note that the inference of an abductive warrant, even an invalid one, need not 
cause a proof to be invalid. We have documented other cases in which participants assessed the 
plausibility of their inferred warrants with examples, observed that they were false, and 
successfully reformulated their argument. Hence, challenging one’s abductive inferences and 
attempting to provide deductive backing for these inferences are important for proving success. 

Summary and Significance 
 In this study, we have identified several reasons that participants are unable to transform 
informal explanations into valid proofs, including not investigating the veracity of one’s 
abductive inferences (as discussed above) and simply changing the representation of the 
argument (i.e., using more formal language) without addressing the warrants by which the 
inferences in the argument were based (a fairly common occurrence that we did not discuss due 
to space limitations). We have also identified several ways that participants were able to base 
proofs on valid arguments, including identifying deductive schemas that could be used to justify 
inferences based on perceptual or results-based generalizations (as illustrated above). If we 
expect students to successfully use informal arguments as the basis for proving, as numerous 
authors suggest (e.g., Garuti et al, 1996; Raman, 2003; Vinner, 1991; Weber & Alcock, 2004), 
then it is incumbent upon the instructors to have students develop strategies such as these that 
allow them to do so. 
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