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Researchers have documented difficulties that elementary school students have in understanding 
volume. Despite its importance in higher mathematics, we know little about college students’ 
volume understanding volume. This study investigated calculus students’ understanding of 
volume. Clinical interview transcripts and written responses to volume problems were analyzed. 
One finding is that some calculus students, when asked to find volume, find surface area instead 
and others blend volume and surface area ideas. We categorize students’ formulae according to 
their volume and surface area elements. Clinical interviews were used to investigate why 
students might find surface area when asked for volume. We found that some students believe 
adding the areas of an object’s faces measures three-dimensional space. Findings from 
interviews also revealed that understanding volume as an array of cubes is connected to 
successfully solving volume problems. This finding and others are compared to those for 
elementary school students. Implications for calculus teaching and learning are discussed. 
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1 INTRODUCTION 

Many calculus topics involve volume: optimization and related rates in differential 
calculus, volumes of solids of revolution and work problems in integral calculus, and multiple 
integration, to name a few. Although volume shows up in these places, researchers have focused 
on elementary school students’ difficulties with volume and little is known about older students’ 
understanding of this idea. This study extends knowledge about students’ understanding of 
volume and, in using non-calculus tasks, builds a foundation for studying volume understanding 
in calculus contexts. 

We conducted this study within a cognitivist framework, giving students mathematical 
tasks and analyzing the reasoning underlying their answers. This is consistent with the cognitivist 
orientation toward focusing on “the cognitive events that subtend or cause behaviors (e.g., [a 
student’s] conceptual understanding of the question)” (Byrnes, 2000, p.3). We collected written 
survey data and conducted clinical interviews to investigate the following research questions: 

 
The research questions investigated are:  
1. How successful are calculus students at volume computational problems?  
2. Do calculus students find surface area when directed to find volume? 
3. If calculus students find surface area when directed to find volume, what  

 thinking leads them to do so?  
 
Our major finding is that nearly all students correctly calculate the volume of a rectangular 
prism, but many students perform surface area calculations or calculations that combine volume 
and surface area elements when asked to find the volume of other shapes.  

 
 



2 ELEM. SCHOOL STUDENTS’ UNDERSTANDING OF VOLUME 
There is a paucity of literature about calculus students’ volume understanding, though it 

is known that some calculus concepts involving volume (e.g., related rates, optimization, and 
volumes of solids of revolution) are difficult for students (Martin, 2000; Tomilson, 2008; Orton, 
1983). Research about elementary school students’ volume understanding provided a basis from 
which the researcher investigated calculus students’ volume understanding. Findings from 
research about elementary school students’ volume understanding suggest that this population 
has trouble with arrays, formulae, and cross-sections.  

Volume computations rely on the idea of an array of cubes, a representation with which 
elementary school students struggle (Battista & Clements, 1996; Curry & Outhred, 2006). Two 
difficulties students have are (1) understanding the unit structure of an array and (2) using an 
array for volume computation. Battista and Clements (1996) found that only 23% of third 
graders and 63% of fifth graders could determine the number of cubes in a 3x4x5 cube building 
made from interlocking centimeter cubes. One source of this difficulty is not seeing relationships 
between rows, columns, and layers, leading students to double-count innermost and edge cubes 
or viewing the array “strictly in terms of its faces” (Battista & Clements, 1998, p. 229). In other 
words, it seems that some elementary school students are thinking about surface area when asked 
about volume.  

Other findings indicate that some elementary school students use area and volume 
formulae without understanding them (De Corte, Verschaffel, & van Collie, 1998; Fuys, Geddes, 
& Tischler, 1988; Nesher, 1992; Peled & Nesher, 1988). For example, Battista and Clements 
(1998) found that some students’ strategies involved “explicitly using the formula L x W x H 
with no indication that they understand it in terms of layers” (Battista & Clements, 1998, p. 229).  

Lastly, findings indicate that identifying the shape of a solid’s cross-section is difficult 
for students (Davis, 1973). This finding is important because some volumes can be thought of as 
V=Bh where B is the base of the solid and the base is, in fact, a cross-section. Students having 
difficulty finding the shape of a cross-section would thus have difficulty using the V=Bh 
formula. This finding carries particular importance if it is also true for calculus students, as 
volumes of solids of revolution problems require identifying the shape of a cross-section. 

 
3 RESEARCH DESIGN 

The data analyzed were from written surveys completed by 198 differential calculus 
students and 20 clinical interviews with a subset of those students. Data collection had two 
phases: first, students completed the written tasks (modeled after those used in research with 
elementary school students) and data were analyzed based on those researchers’ methods and a 
Grounded Theory inspired approach (Corbin & Strauss, 2008) where necessary. Clinical 
interviews (Hunting, 1997) were used to investigate patterns from the written data; that is, 
interview subjects were selected because their answers on written tasks represented an emergent 
category. This methodology allowed for a quantitative analysis of a large number of written 
responses and a qualitative analysis of student thinking about those written responses.  

Written survey tasks consisted of diagrams of solids with dimensions labeled. Students were 
directed to compute the volume and explain their work. The rectangular prism task is shown 

below; the other tasks are included in Appendix A.   
 

 
Figure 1. Volume of Rectangular Prism Task 
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Clinical interview tasks were the same as the written tasks. Interviewees were asked to 
re-work their solutions, thinking aloud as they did so. Questions were asked to probe student 
understanding, such as “Can you tell me about that formula? Why is the 2 there?” and “Can you 
tell me why that [formula] finds volume?” Interviews were audio recorded and transcribed.  

Analysis of written surveys. Data were analyzed using both the methods of other 
researchers and an approach inspired by Grounded Theory (Corbin & Strauss, 2008). This 
entailed first looking for patterns in a portion of the data and using patterns to form categories, 
followed by forming category descriptions and criteria. Those criteria were then used to code all 
the data, testing the criteria until new categories ceased to emerge. The analysis resulted in three 
categories for students’ work: volume, surface area [instead of volume], and other. The 
categories and their descriptions are as shown in Table 1.  

Found Volume  Found Surface Area Instead of 
Volume 

Other 

Magnitude is the correct magnitude 
of the object’s volume, or 
magnitude is incorrect for the 
object’s volume but the 
work/explanation is consistent with 
volume-finding (i.e., multiplication 
or appropriate addition)  

Magnitude is the magnitude of the 
object’s surface area or the student 
work/explanation contains evidence 
of surface-area like computations, 
such as addition. To allow for 
computational errors, magnitude may 
or may not be the actual magnitude of 
surface area.  

Student 
found neither 
volume nor 
surface area 

Table 1. Categories of Students’ Responses 
 
We used these categories to develop coding algorithms for the four volume computations. See 
Appendix B for a sample algorithm.  

 
Analysis of clinical interviews. As interview data included both transcripts and students’ 

written work, there were two parts to the analysis. First, written data were categorized according 
to the aforementioned algorithms. Second, transcripts were used to investigate the thinking 
involved in answers for each category. This was useful because formulae themselves do not tell 
the whole story; for instance, some students explained the formula 2πr2h as a V=Bh formula, 
mistakenly believing that the area of a circle is 2πr2. Other students described 2πr2 as accounting 
for the area of two circles. The former is a volume idea; the latter a surface area one. This led us 
to categorize students’ formulae according to their area and volume elements, with the 
categorizations based on how students talked about those formulae. We begin with this in the 
Results section, then present the frequency of volume and surface-area finding for the four 
shapes. 
 
4 RESULTS 
 We believe there is an important link between students’ formulae and their reasoning: 
that is, our data leads us to believe that students’ formula are not (as is commonly assumed) 
remembered or misremembered, but are instead representative of ideas students have about 
volume. This finding, based on the synthesis of interview data with written work, led us to 
categorize students’ formulae according to their surface area and volume elements. What we 



mean by “surface area and volume elements” is what we alluded to in discussing how the 2 in 
2πr2h might be from an ill-remembered area formula and might be from accounting for two 
bases. Categorizing students’ formula in this way gave us the categories and component 
formulae shown in Table 3. Note the appearance of 2πr2h in both the “incorrect volume, no 
surface area element” and “surface area and volume elements” categories, per the reasoning 
stated above.  
Correct volume Incorrect 

volume, no 
surface area 
element 

Surface area 
and volume 
elements 

Surface area Perimeter 

πr2h  
 

2πr2h  
(1/3)πr2h  
(1/2)πr2h  
(4/3)πr2h 
πrh 
(1/2)πrh 
h*d*r 
 

2πr2h  
2πrh 
2πr + πrh  
πr2 + 2πd  
2πr2 + 2rh  
 

2πr2h +2πrh  
2πr2h +πdh  
 

d+h 
 

Table 2. Categories for student responses to the cylinder task  
 
This table includes all formulae that appeared in students’ written work and interviews. Interview 
data provided help in placing the formula, and interview data are the basis of our claim that 
students’ formulae are a reflection of their reasoning. For instance, consider Nell’s reasoning 
about the volume of the cylinder: 

Nell: I don’t know the formula for this one. Two pi r squared… times the height. 
Sure. We’ll go with that one. So you have two circles at the ends, which is two pi 
r squared… you have two pi r squared because that’s the area on the top and the 
bottom so you can just double it, then you have to times it by the height. 

 Interviewer: Why do I have two areas? 
 Nell: You have two circles. 
The inclusion of the areas of the bases of a shape (what Nell calls the top and bottom) is part of 
finding surface area. However, Nell was not thinking about surface area, she was thinking about 
volume. This is evidenced by the following excerpt: 
 Interviewer: What about this multiplying by the height? Why do we do that? 

Nell: It gives you the space between the two areas. Volume is all about the space 
something takes up so you need to know how tall it is.   

Nell’s reference to the space between two areas is indicative that she was thinking about volume. 
However, as previously stated, her formula (2πr2h) included a surface area idea. We thus put the 
formula 2πr2h in the “surface area and volume elements” category (see Table 3). It is also 
included in the “incorrect volume, no surface area elements” because other students talked about 
this formula as area of base times height where the area of the base was 2πr2. In this case, the 
two is not a nod to two bases, it is an incorrect formula for area but correct reasoning for volume. 

Nell was not the only student who thought about including both circles when finding 
volume: Jo went back and forth about whether she should use the formula 2πr2h or πr2h. The 
interviewer asked her to make the case for both one and two circles as a way to investigate her 



reasoning: 
Jo: The area of the circle is pi r squared times the height, but I can’t decide if I 
need one or two circles. 

 Interviewer: Convince me that you need two circles. 
Jo: You need two because you have the top and the bottom of the cylinder. But 
you don’t actually need two… you just need the one. Because you get the area of 
the circle and you multiply it by the height… the circle is the same throughout the 
whole layer so you just multiply it by the height. 

Jo’s final reasoning was correct, but it’s noteworthy that her initial response to the problem 
involved a surface area idea. Thus, despite her correct final response, we believe this is evidence 
that some students have mixed and combined surface area and volume ideas. An additional 
interesting result is that the frequency of this phenomenon appears to be shape-dependent. This is 
evident in the percentages of students who fell into each category, shown in Table 3.  
 
 Rectangular 

prism 
(n=198) 

Cylinder 
 
(n=198) 

Triangular 
Prism 
(n=122) 

Trapezoid 
 
(n=7)  

Found Vol.  194 (98.0%) 172 (86.9%) 95 (77.9%) 5 (71.4%) 
Found SA 3 (1.52 %) 10 (5.1%) 17 (13.9%) 2 (28.6%) 
Other 1 (0.5%) 16 (8.0%) 10 (8.2%) 0 (0%)  
Table 2. Percentage by task  
Analysis of written data indicated that some differential calculus students find surface area when 
directed to compute volume. However, the percentage of surface-area-finding students varies by 
shape, with few students (1.52%) finding surface area for the rectangular prism, 5.1% of students 
finding surface area for the cylinder, and 13.9% of students finding surface area for the triangular 
prism. A much higher percentage of students (71.4%) found surface area for the trapezoid; 
however, as n=7, this may not be a representative sample.  

 
 5 CONCLUSIONS AND IMPLICATIONS 
 Findings indicate that student success with computational volume problems differs by 
shape. Students were extremely successful with objects such as the rectangular prism, but 
struggled with the assumedly less-familiar trapezoidal prism. This has implications for volume-
finding in calculus; for instance, volumes of solids of revolution are rarely elementary shapes. A 
second finding is that some calculus students find surface area instead of volume, either thinking 
that adding the areas of faces finds volume, or having formed an amalgam of surface area and 
volume ideas.  

One implication for instruction is that instructors might use student-generated formulae to 
diagnose their ideas. Viewing students’ formulae in terms of surface area and volume elements 
may provide clues to the ideas students hold about surface area and volume, and asking students 
about the formulae they use may provide insight as to the ideas they hold. An additional 
implication for instruction is to provide opportunities for calculus students to revisit and 
strengthen their understanding of surface area and volume, including unpacking the formulae for 
each. Further, using the ideas of the shapes of cross-sections and bases could be useful not only 
in understanding the volume of geometric solids for which V=Bh can be applied, but might aid 
students when they learn volumes of solids of revolution.  



A suggestion for further research is to find out if students’ volume/surface area 
difficulties interact with their learning of related rates, optimization, and volumes of solids of 
revolution. It would be interesting to know what happens for a student with an amalgam of 
surface area and volume tries to optimize the surface area for some given volume and whether 
difficulties with this are related to underlying issues with surface area/volume, issues with the 
calculus, or both.  

 
Appendix A: Tasks 

2b. What is the volume of the cylinder?  
Explain how you found it. 
 
 
 
 
 
 
 
 
 

Figure 2. Cylinder Task  
 

3. What is the volume of the object? Explain how you found it. Note: The figure is not drawn to 
scale. 
 
 
 
 
 
 
 

 
Figure 3. 

Right Triangular 
Prism Task 

 
 
 
 
 

 
 
 
Figure 4. Trapezoid Prism 
 

 6.What is the volume of the prism? 
Explain how you found it. 
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Appendix B: Example Coding Algorithm 
Cylinder coding algorithm:  

Correct volume = πr2h = π(32)(8) =  72π [units3] 
 Correct surface area = 2πr2 + 2πrh = 2π(32)+ 2π(3)(8) =   66π [units2] 

1. Did the student write the formulae πr2h or 2πr2h? Did the student write 72π or 144π? 
If so, categorize as “found volume.” If not, proceed to #2. 

2. Did the student write πr2 + ________ or 2πr2 + ____________where ________ is 
something that looks like it might be πdh or some other computation that looks like 
an area of a lateral face? Did the student write 66π? In either case, categorize as 
“found surface area instead of volume.” If not, proceed to #3. 

3. Categorize as “other.” 
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