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This paper provides a framework for analyzing and explaining successes and failures 
when working with summation notation. Cognitively, the task of interpreting a given 
summation-notation expression differs significantly from the task of expressing a long-
hand sum using summation notation. As such, we offer separate cognitive models that 1) 
outline the mental steps necessary to carry out each of these types of tasks and 2) provide  
a framework for explaining why certain types of errors are made.
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Introduction
In the Spring of 2011, we began an Advanced Calculus teaching experiment with 

pairs of students. The purpose of this experiment was to lay the groundwork for a new 
instructional  sequence  for  Advanced  Calculus  (Real  Analysis).  The  first  sequence  of 
tasks had the students investigate notions of area, with increasing formality and rigor, in 
order to motivate the study of sequential limits. In the midst of this experiment, two of 
our students encountered interesting challenges in using summation notation to talk about 
area.  At last year's RUME conference we detailed how those two students struggled, but 
the data was insufficient for us to warrant any strong claims about  why they struggled 
(Strand, Zazkis, & Redmond, 2012).

The research reported here is a follow-up study designed to further understand the 
cognitive complexity of summation notation and contribute a framework that could help 
explain students’ difficulties. In particular, we sought to answer the following questions:

Are  student  difficulties  with  summation  notation  caused or  revealed by  working  
within the context of rectangular approximations to area under a curve?
What are some plausible explanations for the difficulties students encounter?

Theoretical Perspective
Our  cognitive  models  are  similar  in  structure  and  purpose  to  the  genetic 

decompositions of APOS theory. A genetic decomposition “is a model of cognition: that 
is, a description of specific mental constructions that a learner might make in order to 
develop her or his understanding of the concept” (Brown, DeVries, Dubinsky, & Thomas, 
1997). The difference between our models and a genetic decomposition is that we are not 
describing how the effective use of summation notation is developed by a student but 
rather  what  kinds  of  mental  constructions  are  necessary  in  order  to  use  the  notation 
effectively.

In general, these “mental constructions” can be broken down into actions, processes,  
objects,  and  schema. This breakdown is  a  framework that  is  often referred to  by the 
acronym APOS (ibid).  Actions are procedures or transformations that are performed on 
objects,  often  in  a  very  step-by-step  manner.  Through  interiorization,  a  sequence  of 
actions can be reflected upon and envisioned and analyzed without needing to be carried 



out.  When  an  individual  interiorizes  a  sequence  of  actions  we  say  that  they  have 
constructed a process. When an individual is able to reflect on a process as a whole and 
even apply other actions to that process, we say that the individual has encapsulated that 
process into an object. Actions, processes, and objects can be coordinated into a schema.

These models of cognition can be useful for instructional design as well as helping to 
explain the causes of specific student errors and non-standard conceptions.  Below we 
outline  our  cognitive  models,  which  describe  how  the  effective  use  of  summation 
notation involves the successful coordination of a number of actions and processes into a 
coherent schema. In our Results section we will demonstrate how these models may be 
used to provide plausible explanations for some observed survey responses.

Expanding a summation-Notation Expression: summation notation can be thought of 
as a schema, encoding a coordinated set of mental activities or procedures :

• Iteration - running through the iterating values of the index
• Function Evaluation - This could be a conventional function in the summand of 

the notation, but also captures the use of indexed variables (which are themselves 
really just functions on the Natural Numbers).

• Summation – Summing the terms generated by the coordination of iteration and 
function evaluation. Interestingly, there may be two ways to think about this that 
are fundamentally different: you can either add as-you-go creating a running total, 
or generate the full list of terms and sum all-at-once at the end. This distinction is 
very important when you begin to consider infinite series and convergence.

Accurately interpreting a given summation-notation expression involves coordinating 
these mental activities or procedures:

For example, in order to expand

Figure 1

one might go through the following mental actions (MA):

 MA1. Recognition that the initial value of the index k is 2.
 MA2. If k <=7, coordination of the following actions:

(a) Action of evaluating the summand with the current value of the index (k).
(b) Action of adding the resulting value to the running total. Alternatively, the 

action of placing that value in a list to be added at the end.
(c) Action of incrementing the index to the next whole number.
(d) Return to Step 2 again.

 MA3. Recognition that, after running through 2(a)-2(d) when k = 7, you are finished 
expanding the expression.



 MA4. In the case of list generation, the final step would be to compute the sum.

After performing this sequence of actions one might interiorize that sequence and 
consider the whole expansion as a process. This process could then be conceived of as 
being constructed from the following sub-processes:

P1. Recognition that the initial value of the index k is 2.
P2. Construction of the process of k running through all of the successive integer 

values between 2 and 7.
P3. Coordinated with Step 2, construction of the process of the summand being 

evaluated over the range of k values.
P4. Recognition that these two processes together will generate a) a list of terms to be 

summed, b) an addition expression, or c) a number.

The process view outlined above represents a more sophisticated understanding of 
expanding summation notation, one that could be used to make sense of more complex 
ideas like Riemann sums. However, one must still go through the mental actions in order 
to actually generate the long-hand sum.

Expressing a Sum Using summation Notation: 

Given the prompt, 

Express the sum of the first five odd integers using Summation Notation,

one might go through the following mental constructions:

MC1. Construct, mentally or physically, the long-hand sum, e.g.:
1 + 3 + 5 + 7 + 9

MC2. Construct an indexing process
a) Identify an appropriate starting value of the index.
b) Identify successive integer values of the index with each term in the sum.
c) Identify the appropriate terminating value of the index.

MC3. Construct a function that takes index values as its input and outputs the 
appropriate term of the sum. For this example, with index k, the function (2k – 1) 
would generate the appropriate addends for integer values 1 ≤ k ≤ 5.

MC4. Arrange the elements of the notation to indicate the desired sum.

We think of  MC2 as  outlined  above as  a  kind of  ‘standard’  way of  constructing  an 
indexing process.  However,  there  are  certainly  non-‘standard’  ways of  arriving  at  an 
equivalent end result. One might also first come up with a function that generates the 
odds and then adapt  the indexing to generate  the appropriate  list  to  be summed.  For 
instance, if you thought of odd numbers as one-greater than evens, you might want to use 
the formula (2k + 1) to generate odd numbers. In that case, the next step would be to 
identify which values of k you would have to plug in to generate 1 as your first odd and 9 
as your last.



Method
We designed a brief survey made up of three different tasks related to summation 

notation. The three tasks were designed to give students the opportunity to work with 
expanding a summation-notation expression and expressing a long-hand sum using 
summation notation. The first task was a context problem in which the students were 
asked to express a desired quantity using summation notation. There were two versions of 
this task, one whose solution involved using a composition of functions and one whose 
solution did not. With this first task we sought to simulate some of the challenges we 
noticed in our Advanced Calculus teaching experiment (Strand, Zazkis, & Redmond, 
2012) without involving the area context. For the second task, students were asked to 
express the sum of the first ten odd integers using summation notation. For the third task, 
students were given a summation notation expression and were asked to write out the 
long-hand sum it represented. These pair of tasks were designed to investigate how well 
students could use and interpret summation notation in a simple context.

Figure 2

Figure 3

Figure 4

The surveys were distributed to students in multiple sections of Calculus II 
(techniques and applications of integration), Calculus III (sequences and series), an 
introductory real analysis course, and a graduate-level analysis course. In this way we 



hoped to receive responses running the gamut of student experience with summation 
notation. We received 117 completed surveys, of which 98 were from the calculus 
sections.

The first round of analysis consisted of evaluating each survey response for 
correctness. During the second run-through the focus was on describing, as specifically as 
possible, each error that occurred. At this stage we were most interested in how errors on 
the simple tasks correlated with errors on the more challenging tasks. It was our initial 
attempt to explain the origins of the errors that led us to develop cognitive models of the 
mental activities involved in using summation notation.

Setting the data aside for the moment, we set about constructing the aforementioned 
cognitive models. These were developed a priori, drawing on our mathematical 
knowledge of summation notation and the constructs of APOS theory. After much 
thought and debate, we arrived at something we though might be useful for analyzing our 
data. Through the process of data analysis were able to further refine the models, until we 
arrived at something that was capable of explaining many of the most common and 
significant errors we were seeing . 

Results
The cognitive models that we developed provide powerful tools for analyzing and 

explaining student errors when using summation notation. Due to length considerations, 
here we will briefly discuss some of the errors we were able to explain with the models.

A sample response to Task 3 is given in Figure 5.

(2 + 1)2 + (2 + 1)2 + (2 + 1)2 + (2 + 1)2 + (2 + 1)2 + (2 + 1)2 + (2 + 1)2

Figure 5

This student seems to have been able to evaluate the function when k = 2. However, there 
seems to be no recognition of the indexing process (MA2c), and they appear to have 
taken the value of 7 (Figure 4) to be the number of terms in the sum. Here is a very static 
view of summation notation, with almost none of the underlying processes being 
demonstrated with this response.

A sample response to Task 2 is given in Figure 6.

Figure 6

This student also provided an unprompted example that further illuminated their thinking 
(Figure 7).



F
igure 7

While there is evidence of an iterative evaluation of the function (i – 1), the increment of 
the index appears to be 2. It is impossible to tell whether the “i = 2” is supposed to 
suggest an increment of 2, the starting value of the index, or both. Even the successful 
coordination of MC2 and MC3 does not guarantee successful adherence to the 
convention; the sub-process of incrementing the index by 1 when a different increment is 
desired presents a non-trivial challenge for many students.

A sample response to Task 1 is given in Figure 8.

Figure 8

It seems reasonable that the student used “f(x)” to stand for the Avg Speed values from 
the table provided and that the 3/2 represents the time interval for each measurement. 
Notice that there is no indexed variable in the summand. We intentionally designed this 
problem so that there is no obvious rule that takes an index value to the list of average 
speeds (Figure 2). Thus it is not surprising that the student was unable to use an indexing 
process to generate the desired long-hand sum (which itself is a correct representation of 
the stated problem). However, the values for j going from 0 to 6 suggest that there may 
be further difficulties with MC2. While it is unclear exactly how they envisioned f(x) 
being evaluated, they did not demonstrate an ability to coordinate an indexing process 
with a function-evaluation process (MC2 and MC3).

Conclusions 
The cognitive models outlined above provide a framework for analyzing student 

thinking about summation notation. Additionally, they could be used to design 
instructional tasks that would help students to develop an understanding of the underlying 
processes and ways in which they can successfully be coordinated (Weber, and Larsen, 
2008; Asiala, Dubinsky, Mathews, Morics, & Oktac, 1997). It is worth noting, especially 
for educators, that summation notation encodes multiple potentially challenging 
processes for students. More than that, successful use of summation notation involves 
coordinating these challenging processes. The struggles we found with Task 1 suggest 
that it is likely that our original work in the context of area under a curve revealed 
difficulties with summation notation rather than causing them. 
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