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Math content courses aim to develop mathematical reasoning and communication skills in 
future teachers. Instructors often assign problems requiring in-depth written explanations to 
develop these skills. However, when a student’s conception is incorrect, does written feedback 
from the instructor create the cognitive dissonance necessary to effect realignment of the 
student’s understanding? These conceptions may be mathematical (“what is a fraction?”) or 
meta-mathematical (“what constitutes a justification?”). Assigning problem revisions 
theoretically creates space for cognitive dissonance by having students rethink their solutions. 
I investigate a revision assignment in a course for future teachers to understand the nature of 
students’ revisions and the possible impetuses for these revisions. In particular, I find 
preliminary evidence that students’ revisions demonstrate changes in their language, 
mathematics, and use of examples and representations. Further, students’ adoption of new 
representations in their solutions are largely due to observing peers’ presentations rather 
than to instructor feedback. 
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Research Questions 
One goal of math content courses for future teachers is to develop mathematical reasoning 

and communication skills. However, unlike courses for math majors, future teachers need to 
be able to reason with conceptual and visual models and not just the axiomatic reasoning of 
mathematicians. As in most other math courses, instructors often assign problem sets 
requiring in-depth written explanations to develop and assess these skills. However, when a 
student communicates a concept incorrectly, does the standard written feedback from the 
instructor create the cognitive dissonance to effect a realignment of the student’s 
understanding? The conceptions I refer to may be mathematical (“what is a fraction?”) or 
meta-mathematical (“what constitutes a justification?”). Assigning problem set revisions 
could theoretically create a space for cognitive dissonance, if not the dissonance itself, by 
asking students to rethink their solutions. I investigate a revision assignment in a course for 
future teachers to better understand the nature of students’ revisions and the possible 
impetuses for these revisions.  

I had several questions about this revision process: 
Q1 What kinds of revisions do students make when asked to revise their solutions to 

problem sets? 
Q2 What differences can be detected in the influence of peers’ in-class presentations 

and instructor feedback in the revision process? 
These questions are important for several reasons. In particular, they address specific 

practices of teaching mathematical justification and communication. The first question 
assesses the usefulness of the revision activity as a method of improving students’ 



mathematical justification and communication. The second question illuminates the potential 
importance of multiple forms of feedback in math content courses for future teachers. 

Literature 
It is widely acknowledged that teachers need strong mathematical reasoning and 

justification skills to successfully build mathematical concepts in the classroom (Ball & Bass, 
2003; Ball, 1993). Further, there is evidence to suggest many preservice teachers are weak in 
these skills (Ball, 1990; Morris, 2007). Unfortunately, there is a lack of literature on how 
preservice teachers can gain these skills (Hiebert & Morris, 2012).  

The tools teachers should use in justification are more than the axiomatic systems of 
mathematicians. They should use conceptual models (Lamon, 1997) and visual 
representations of those conceptual models (NCTM, 2000). Examples of these include: the 
number line, the array model of multiplication, and the chip model of integer arithmetic. 
Given the needs of their future teaching practice, mathematical solutions written by future 
teachers should utilize these models and representations. 

Another area this project addresses is revision of mathematical writing. While there is an 
ample body of literature on the research methodology for revision of written composition, 
their heavily linguistic methods do not lend themselves to analyzing mathematical revisions 
(Fitzgerald, 1987). In a mathematical revision, it is not just the linguistic changes we care 
about, but the changes in validity of mathematical arguments, clarity of mathematical ideas, 
and use of mathematical tools (e.g. algebraic models, diagrams, examples). Part of this study 
seeks to fill this hole by using empirical examples of student revisions to create a systematic 
framework to describe revisions to written mathematical problem sets (see Q1). 

Theoretical Framework 
I initially looked to Balacheff’s model of a mathematical conception as a useful 

framework for thinking about the pedagogical purpose of a revision activity and the role of 
feedback in the revision process. In Balacheff’s model, a conception is a provisional state of 
equilibrium of an action-feedback loop between a milieu (i.e. learning environment, such as a 
classroom), and a subject (e.g. a student) under proscriptive constraints (Balacheff & Gaudin, 
2009). In this model, an instructor’s role is to create a milieu that perturbs the equilibrium and 
the student’s job is to select features of the environment to use as feedback. Using this 
language, after the students create a first draft of their problem sets, the instructor introduced 
new sources of feedback into the milieu (e.g. student presentations and instructor feedback) 
and created the explicit need for students to choose from sources of feedback multiple times 
(e.g. multiple drafts of assignments). This theory is meant to model students’ understanding 
surrounding a mathematical concept or problem, but is problematic when their written output 
is a proxy for their understanding. A written assignment is a reflection of a student’s verbal 
communication skills, not just reasoning skills. One way to remedy this is to analyze a  
student’s conception of what makes a good written solution, rather than his or her conception 
of a mathematical topic. This better represents the entwined nature of understanding and 
communication. 

Data 
In this math content sequence for pre-service teachers, students completed weekly 

problem sets comprising challenging problems that require reasoning, justification, and 



explanation. The course was run using inquiry-based learning (IBL) pedagogy and students 
presented solutions to problems every week in class. Often, several students present different 
solutions to the same problem while the class as a whole contributes clarifications, 
corrections, and modifications to presented solutions. During this discussion students 
annotated their problem sets with colored pens before turning them in to the instructor for 
initial feedback. I call these annotations students’ marker comments. At three points in the 
semester, students selected problems to revise and resubmit. 

The data collected includes the following: first drafts of problem, including students’ 
marker comments; initial instructor feedback on first drafts; final drafts of problem sets; and 
written student reflections their revision process. The students’ marker comments serve as a 
proxy to understand the effect of peer presentations and class discussion on the revision 
process. Figure 1 represents the revision process. The items in red are the artifacts I have 
access to.  

 
Figure 1: Model of student revision process. The items in red represent 

artifacts I can see. 

I will use the term one student-worth of data to describe all of those pieces of data for one 
student’s revision of one problem. 

Methods 
To understand students’ revisions as well as sources for their revisions, I wanted a 

framework that would both describe the changes students made during the revision process as 
well as potential changes—students’ marker revisions made during peers’ presentations and 
instructor feedback. To develop this framework I started by analyzing 10 students-worth of 
data. I wrote memos describing (1) changes I detected between drafts, (2) students’ marker 
comments on their first drafts, and (3) instructor feedback. Figure 2 shows how these memo-
ed objects fit into the revision process. 

1st draft 2nd draft

Peers’ Presentations Instructor Feedback
students’
marker 
comments



 
Figure 2: I wrote memos describing [1], [2], and [3] seen in this figure. 

I identified themes in the memos and drafted a set of codes and their definitions. I next 
used this preliminary coding scheme to code the remaining 20-students worth of data from 
that particular problem set and revised the code definitions when ambiguities arose. Next, I 
continued that revision process with a new problem set, another 30 students-worth of data, 
until the definitions stopped changing. This second set of data is what I present below. 

One subtlety of the coding is that there is a challenge of systematically identifying every 
single change between first and second drafts. So rather than identify every single change and 
count the codes with multiplicity, I used the list of codes as a checklist and recorded only if a 
certain code occurred or not. This proved to be more systematic and replicable when re-
coding for reliability. Further, I used written student revision reflections as member checking; 
students had written reflections describing the changes they made and I was able to cross-
check the changes I identified using their reflections. 

Results 
The revised codes and definitions arising from this process can be found in Table 1. The 

codes fall into four larger families: Language (Expo, Expl, Lang), Mathematics (Lar, Sma, 
Jus, Not, Prec, Def), Examples, and Representations. 

 
Table 1: Revision Framework 

Code Name Definition 
Expo Adds 

Exposition 
This refers to adding prose describing the problem premise and 
goal before steps are carried out. Many students do not include this 
in early drafts, but it appears in later drafts. This is a specialized 
kind of explanation, but one so common it gets its own code. This 
does not refer to editing the exposition, only adding it where there 
was none before. 

Expl Adds 
Explanation 

This includes explaining a diagram, explaining thinking or 
attempts tried, or making steps in a process explicit. This is 
different then justification, as it does not explain why a process 
works; it is a description of a process or phenomenon. This refers 
to adding explanation to a place in a solution where there was 
none before, not refining it. 

1st draft 2nd draft

Peers’ Presentations Instructor Feedback
students’
marker 
comments

1

2

3

Changes



Code Name Definition 
Lang Language This describes changes (not content additions) to language. 

Examples are changes to clarity, flow, word-use, grammar, full 
sentences, or conciseness. This refers to essentially the same 
content reorganized or reworded. It does not refer to new content 
such as an expanded explanation or justification. 

Lar Large 
Correction 

This refers to correcting large errors in the original not covered by 
other codes. For example, this would not refer to filling in gaps in 
justification or including needed definitions. Instead this would 
include rectifying missing solutions or large numerical errors. 

Sma Small 
Correction 

This refers to correcting small, usually numerical, errors in the 
original solution. 

Jus Adds 
Justification 

This describes added attempts at answering “why?” or filling in 
logical gaps. 

Not Introduces New 
Notation 

This describes a change in notation. One common example is 
using algebraic notation when previous description was verbal. 

Prec Adds Precision This includes adding constraints on variables, using more precise 
quantifiers, referencing hypotheses of the problem, or correcting 
use of the equals sign. Adopting algebraic notation only counts as 
Prec if the previous notation was imprecise. 

Def Definition Adds references to definitions, refines references to definitions, or 
makes them more explicit. 

Ex+ Add Example This refers to adding new examples in the course of an exposition, 
explanation, or justification. 

Ex- Delete Example This refers to deleting examples from the exposition, explanation, 
or justification. 

Rep+ Add 
Representation 

This refers to adding visual/physical models of numbers and/or 
operations. This could be adding a number line, discrete models of 
numbers, area models of multiplication, etc. This does not include 
tables or other record-keeping and problem-solving systems. It 
also does not cover inclusion of an algebraic representation of a 
situation; that falls under Not. 

RepM Modify 
Representation 

This refers to changes made to an existing representation, such as 
adding lines, circles, or arrows to an existing array or number line 
model. 

Rep- Delete 
Representations 

This refers to deleting a representation from an earlier draft. 
 

 
To give examples and non-examples of every code here is beyond the scope of this 

preliminary report, but I will give some flavor of the student work and the codes by providing 
some examples of the Justification code. Consider a problem students were given: “Show that 
if the difference between two integers is odd, then their sum is also odd.” A marker comment 
that received the code Jus was the following: “missed how to explain why it’s always true 
that odd-even or even-odd is odd.” It receive the Jus code because a student is noting a gap in 
logic that must be filled in on a later draft. An instructor comment that received the code Jus 



is the following: “Why will the two numbers always be different? (one odd and one even) Can 
you explain that more?”. It receive the Jus code because it is asking for an explanation of why 
something is true. To see an example of Jus coding a change, consider the following 
paragraph in a first draft: “If the difference between two numbers is odd, that means that one 
number in the pair is odd and the other is even (as seen in the examples above).” The same 
student in a second draft attempts (still imperfectly) to more generally address this 
phenomenon with the following change to her justification: “If we look at all these examples 
where the difference between two numbers is odd, we find out that the two numbers we are 
taking the difference of have to be one odd number and one even number. We know this is 
true for all numbers because of the rules, odd-even=odd, even-odd = odd. These two rules are 
the only rules that can produce an odd number as its difference.” This examples points to 
another subtlety in the coding—I used a code if there was a change in that dimension, not 
necessarily ultimate perfection. 

When I used these codes on the revision data from one problem set (30 students worth of 
data), I found the results seen in Figure 3, Figure 4, Figure 5. In all three figures, a given 
student can receive any given code at most once, so the maximum for all codes is 30. 

 
Figure 3: Changes seen between drafts in 30-students worth of data. 
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Figure 4: Potential changes seen in 30-students worth of market comments. 

 

Figure 5: Potential changes seen in 30-students worth of instructor comments. 

Discussion 
The first observation (answer to Q1) is that students’ revisions are rich mathematical 

changes. They make changes to their expositions, their language, their justifications, their use 
of definitions, their notation, their precision, their use of examples, and their use of 
representations. This would indicate that the revision activity is a positive pedagogical 
exercise. 

A more nuanced observation is that peer presentations appear to affect student adoptions 
of examples and representations more than instructor feedback. This is in part perhaps due to 
the fact that (as evident in Figure 5), the instructors of this course (both mathematicians by 
training) fixate on formal mathematical justification in their feedback. However, despite the 
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limited scope of this instructor feedback, over one third of the class incorporated new 
representations into their solutions, and almost one third of the class added or deleted 
examples (see Figure 3). I hypothesize that the impetus for these changes can be found in the 
peers’ presentations, as evidenced by the students’ marker comments to themselves (see 
Figure 4). 

In addition to changes in justification, changes to examples, and changes to 
representations, there were changes in language (corresponding to the codes Expo, Expl, and 
Lang). I want to explore further what these may be due to. I hypothesize that they are both a 
normal part of the revision process and also highly related to the changes students made to 
their to justification. 

I think these preliminary results have potentially interesting ramifications for using IBL 
methods with future teachers. We see evidence students utilize peers' presentations differently 
from instructor feedback, in ways that are important to their future teaching practice. 

Questions to the Audience 
(1) What other methodologies could I use to analyze this large collection of data? 
(2) What theoretical perspectives could help me look at this data in different ways? 
(3) What are some alternative frameworks for looking at (mathematical) revisions?  
(4) What are some frameworks for teasing apart the code Justification in more detail? 
(5) What is the role of the specific content area (number and operations) in this analysis? 

In particular, what observations could generalize to the second and third semesters of 
the course, whose content areas are geometry and algebra?  

(6) What about these results is special to content courses for pre-service teachers? Could 
there be similar analyses done on student revision in upper division math courses? 
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