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Introduction Recent reform movements, including the Mathematical Association of Amer-
ica’s Curriculum Foundations Project, have sought to make calculus courses more coherent
with other fields (Hughes Hallet, 2000). Despite this and other interdisciplinary reform efforts,
post-calculus instructors still express extreme dissatisfaction with their students’ mathemat-
ical preparation (Ferguson, 2012). We do not downplay the importance of the lamentations
of other disciplines, but instead suggest that there also exist coherence issues within math-
ematics. Our hypothesis is that there is a mismatch between how students are expected to
know calculus at the end of a course and how students are required to use calculus in future
courses. Specifically, we examine calculus knowledge for differential equations.

Background Learning differential equations (DEs) is difficult and that difficulty is com-
pounded by the multitude of other areas also needed, such as science, lifelike situations, and
complex mathematics. DEs classrooms have benefitted from successful school mathemat-
ics approaches applied in a college classroom context (e.g., O. Kwon, Allen, & Rasmussen,
2005; Rasmussen & O. N. Kwon, 2007; Czocher & Baker, 2011). Past research has shown
that there are foundational ideas from pre-calculus and calculus that are vital to success in a
DEs course. Such ideas include: equation and solution (Raychaudhuri, 2008), mathematical
differences among quantity, rate and rate of change (Rowland & Jovanoski, 2004; Rowland,
2006). Despite the existence of such foundational ideas, their coherence from calculus to DEs
has not been explored.

Beginning from the calculus reform movements of the 1980s, calculus has been studied
in many different contexts from many different research angles. Calculus instruction has
benefited from taking advantage of contemporary theories specific to mathematical think-
ing. Many aspects of the calculus reform the emphasis on conceptual understanding and
multiple representations, together with increased use of technology since the early 1990’s
are so embedded in calculus practice that they are considered mainstream (Ferrini-Mundy
& Gucler, 2009). We suspect that these instructional advances cannot be utilized to their
fullest without examining how the calculus must be known in future courses and in our case,
in DEs.

Our purpose in this research was to examine how expected understandings of calculus
topics align with the expected understandings of these topics in later courses. fThat is we
examine if and how calculus and DEs align epistemically.

Research Frameworks In this work, we adopted the Calculus Content Framework (CCF)
to examine important calculus concepts and skills (Sofronas et al., 2011). The CCF was built
to organize goals from the first year of calculus into four strands: the first strand is sufficient
for our purposes as it covers mastery of fundamental concepts and skills. The concepts are:
derivative, integral, limits, approximation, sequences and series, Riemann sums, parametric
and polar equations, continuity, and optimization. The skills are: derivative computations,
manipulating algebraic expressions, area and volume, parametric equations, polar coordi-
nates, trigonometric manipulations, facility with logarithms and exponentials, epsilon-delta
proofs, listening and reading comprehension, facility with definitions and notation.



To meet our theoretical needs, we draw from parts of APOS theory (Dubinsky & Mc-
Donald, 2001), conceptual analysis (Thompson, 2002; Thompson, 2008), and didactical phe-
nomenology (Freudenthal, 1983). Though APOS theory decomposes a concept into four
stages (Action-Process-Object-Schema), it does not account for multiple concepts being uti-
lized within the same mathematical setting. Didactical phenomenology and conceptual anal-
ysis suggest how a learner might sequence a mathematical idea, but is not embedded in a
mathematical setting that a student might encounter. We required a theoretical perspective
that could account for connections among concepts and that could be situated within the
kinds of mathematical settings that are described in syllabi.

Combining pieces of all these frameworks, we created a new technique of analysis we
termed mathematics-in-use which builds on Freudenthal’s 1983 position that mathematical
objects are created as an organizational scheme for mathematical phenomena. Our tech-
nique examined, through reflective reading of the texts and paradigmatic exercises, concep-
tual mathematical prerequisites, how these multiple mathematical concepts come together,
how they are used, and how understandings of them may shift in order to structure a math-
ematical setting (task, example). Mathematics-in-use is an in-depth examination of how
mathematical objects (concepts, ideas) must be interpreted for the problem solver to use
them within the context of an example or task. We explore applying mathematics-in-use to
different aspects including calculus concepts as a whole and in worked exercises. We believe
that the best way to share our intentions for mathematics-in-use as a method of analysis is
through an example, however that is beyond the scope of this current paper. We will focus
on the calculus concepts in this paper, but a detailed examination of a worked exercise is in
press (Czocher, Tague, & Baker, in press).

Methods In working with the above frameworks, we needed to use a multistage approach.
Ferguson (2012) used a similar approach to examine how other disciplines required their
students to know calculus. First, identify the topics and skills vital to DEs. Second, clarify
the calculus topics and skills needed for successful understanding of the DE topics and
skills. Third, apply our technique of mathematics-in-use to reflect on the process of solving
exercises.

Before we describe our methods, we note that the differential equations course we draw
from in this study is specifically for scientist and engineers. Since approximately 95% of
the students in first-year mathematics courses are not majoring in mathematics (Ganter &
Barker, 2004), our choice is most certainly warranted.

In the first stage of our multistage approach, we examined two textbooks currently in use
at The Ohio State University (OSU). The textbooks are described in greater detail in some
of our previous work (Czocher & Baker, 2011), but we offer some brief descriptions here.
Elementary Differential Equations and Boundary Value Problems is a common differential
equations textbook within the United States (Boyce & DiPrima, 2009). The overall emphasis
of the book is on analytic techniques and it is organized by solution type. An Introduction
to Differential Equations for Scientists and Engineers was written specifically to meet the
needs of scientists and engineering majors at OSU (Baker, 2012). The organization of the
book centers around exemplary problems from science and engineering and approaches those
problems through mathematical modeling. Linear algebra is not a prerequisite for DEs at
OSU, and so neither book requires prior linear algebra knowledge. However, both books



assume previous knowledge of multivariate calculus as well as sequences and series. We
examined the textbook table of contents, homework assignments, course objectives, and syl-
labi. Lastly, we interviewed five engineering faculty members who were teaching courses that
listed DEs as a prerequisite, two mathematics faculty members, and five teaching assistants
assigned to a differential equations course.

In the second stage, we used the CCF (Sofronas et al., 2011) to identify the calculus topics
and skills necessary to explain the DE topics and skills. Some additions to the framework
were necessary, for example, the derivative computations topic needed to include partial
derivative computations. We also added the fundamental theorem of calculus topic as it is
vital to differential equations in explaining the relationships between derivative and integral.

Figure 1 offers a pictorial view of our decomposition results. It is a matrix with DE topics
displayed horizontally across the top and calculus topics (via the CCF) vertically down the
left side. The top panel of the left side includes calculus concepts and the bottom panel
includes calculus skills. Where dots are present indicates that a particular calculus concept
or skill is necessary for the above differential equation concept. For example, in the column
labeled separable equations, the calculus concepts integral and fundamental theorem as well
as the calculus skills integration techniques, algebraic expressions, trig manipulations, and
logarithms and exponentials are necessary.

Using mathematics-in-use, our decomposition shows a set of epistemological mismatches
between calculus and differential equations. These mismatches are examined more fully in
the next section, summarized in Table 1, and an extended example is available in our sub-
mitted manuscript (see Czocher, Tague, & Baker, in press).

Content Analysis The matrix from Figure 1 provides a visual representation of the ways
that differential equations content relies on calculus concepts and skills. Horizontally, across
the top, are the DE topics and vertically down the left side are the calculus concepts and
skills identified from the CCF (see Sofronas et al., 2011) with our necessary additions. If a
dot appears in box i,j, then it signals that the calculus content in row i is necessary for the
differential equations topic in column j.

Similar to Ferguson’s 2012 study of calculus, the suggestions of faculty members for topics
covered in differential equations were dependent on whether the individual was a teacher of
mathematics or a user of the mathematics. Thus, only one engineering faculty member chose
existence/uniqueness as crucial, whereas all mathematics faculty members listed it as vital.
In cases such as these where there was consensus among an entire group, we included the
topic. Some professors also suggested Laplace transforms as vital, however, this topic is not
included in the introductory differential equations course for engineers and scientists, and as
such it was not included in our content analysis.

It is evident from a quick glance at Figure 1 that there are far more marks in the bottom
panel than in the top panel, leading to the conclusion that DEs is a skill-based collection
of topics. Note also, that some calculus concepts and skills are not central to any DE
topic. For example in calculus concepts, approximation, Riemann sums, continuity, and
optimization are absent and in skills, polar coordinates and epsilon-delta proofs are also not
used. We caution the assumption that because they are not explicitly listed as necessary
that they are not utilized anywhere in DEs. Derivations of important equations in DEs
provide exemplary reasons for this caution as they are supported through the concepts of



approximation, continuity, and optimization.

Figure 1. Decomposition of differential equations topics relative to Calculus Content Framework
(Sofronas et al., 2011)
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Epistemological Mismatches Through our mathematics-in-use analysis technique, we
uncovered epistemological mismatches within these calculus concepts: derivative, integral,
fundamental theorem of calculus, limit, sequences and series, parametric and polar equations,
and continuity. Table 1 provides a summary of each of these mismatches and then elaboration
on each concept follows. We draw attention to the fact that despite some concepts having
no visible mismatches, vital concepts, such as derivative, are vastly mismatched.
Derivative Concept Throughout calculus, the concept of derivative is used to produce a
numerical value. Students are taught computational methods for taking the derivative of a
function and finding the derivative at a point for a given function. In most cases, solutions
to derivative exercises are numerical values. In DEs, the derivative is used as an operator,
specifically as the inverse to the integral operator.
Integral Concept During calculus courses, the concept of integral appears throughout the
course. For example, it is embedded in: the area under a curve, the area between two curves;
Riemann sums and summations; improper integrals definite and indefinite anti-derivatives;
solids of revolution; work-energy relations; accumulation; measurement of attributes (e.g.,
arc length, surface area, volume, center of mass); fundamental theorem of calculus. Many
times, computation is emphasized over application of the concept of integral. In contrast
integrals in DEs are viewed and used mainly as the inverse operation of derivative to produce



Table 1: Comparison of uses of calculus ideas in calculus and differential equations
Calculus Differential Equations

derivative computation; rate of change rate of change; algebraic object; invertible operation
integral anti-derivative; measurement of area, volume, accu-

mulation
technique for solving differential equations

fundamental theorem of cal-
culus

formal justification for using anti-derivatives instead
of definite integrals; short cut for computing certain
derivatives and definite integrals

creates free parameter for satisfying initial/boundary
conditions

limit algebraic computation; exposure to formal (i.e., ε-δ)
definitions; basis for derivative definition

relates discrete and continuous models of a situation

sequences & series using theorems to check for convergence; writing
common functions in polynomial bases

means for conveniently representing functions

parametric & polar equations alternative representations of functions introducing auxiliary equations; tool for reducing or-
der; tool for representing solutions graphically

continuity property to be checked mathematical tool for ensuring desirable mathemati-
cal properties

a family of functions. They are used also to compute coefficients of Fourier series. The overall
epistemological mismatch is that while in calculus, students expect to obtain numerical values
when using integrals while in DEs, it is vital as an invertible operator.

Fundamental Theorem of Calculus Concept The fundamental theorem of calculus
provides the relationship between the definite integral and anti-differentiation in calculus
courses. It also provides a simplification of computation of definite integrals. While the
fundamental theorem of calculus is vital to DEs, it is not explicitly visible because differential
equations themselves are collections of derivatives in combination with algebraic procedures
that form conditions which are satisfied by a family of functions. It can also be hidden
because there are very few cases when definite integrals are expressed in the form of the
theorem statement. On the contrary, fixing initial or boundary conditions constrain the
choice of a particular anti-derivative. Lastly, the fundamental theorem of calculus is hidden
when using methods such as undetermined coefficients or separation of variables. When it is
visible, it underpins the integral as the inverse operator of the derivative. Part of the reason
why this topic is a mismatch might be due to the fact that derivatives and integrals are not
seen as operators in calculus.

Limit Concept In calculus, limits are primarily algebraic computations that replace the
brief introduction to epsilon-delta proofs. It forms a basis for the definition of derivative.
In DEs the limit concept is used to derive differential equations and to discuss long-term
behavior and stability. Whereas in calculus, the limit is treated as a computational exercise,
in DEs, it is utilized in reasoning through behaviors of functions.

Sequences & Series Concept In calculus, sequences and series are given as topics in a
vacuum. Most of the exercises required in calculus textbooks include reading and applying
theorems to determine limits or checking for convergence. Occasionally, students are ex-
pected to use series to compute approximations of numbers, such as e or pi2

6
. MacLauren,

Taylor, and power series are introduced to provide (possibly infinite) sets of monomials for
approximating values of various functions, such as ex, at or near a point of interest. However,
rather than focusing on the new representation being a way of defining complex functions in
terms of simpler functions, students in calculus are required only to compute higher order
derivatives to construct the power series.

The emphasis is inverted in DEs. Power series are called upon regularly for their utility
in representations of functions. Using a technique where one assumes the solution function
can be represented as a convergent power series, the monomial coefficients can be determined
through recursion relations. Fourier series construction is another place where series are used



to transform ordinary and partial DEs. To summarize, in DEs, series provide new ways to
construct and represent functions while in calculus, sequences provide an introduction to
partial sums, which are then used to approximate specific values of functions.

Parametric & Polar Equations Concept Parametric and polar equations are used within
calculus to provide an introduction to functions in alternate coordinate systems. Generally,
exercises request translation between Cartesian, parametric, and polar systems or computing
integrals in these systems. Because parametric equations are so closely related to vector-
valued functions in DEs, they are used to convert a higher-order differential equation to a
system of first order equations. This process allows the study of evolution of these systems
numerically or graphically. Parameterizations are also used in dynamical systems approaches
to represent solutions in graphs involving t as the input variable and graphs with the unknown
function as the variable, requiring complex shifts in reasoning.

Continuity Concept During calculus courses, continuity is treated as a property to be
checked using the vertical line test or limit checking. In DEs, continuity is used as a tool for
ensuring desired mathematical properties.

Common Themes The previous subsections have provided a glimpse of the epistemologi-
cal mismatches between calculus and DEs. One major theme across all examples is that in
calculus, functions are treated as actions that produce output numbers given input numbers,
whereas in DEs, functions must be viewed as objects. This distinction includes derivatives
and integrals.

Interpretation and Concluding Remarks Using the CCF decomposition of DEs content
into calculus topics, we reveal what calculus topics must be known, but not how they must be
known. Our contributions are toward strengthening the CCF in its practical application of
relating calculus-dependent topics to calculus coursework as well as utilizing the framework
for exploring conceptual coherence across curricula.

Our results provide further evidence that a large amount of DEs requires proficiency
in calculus concepts and skills. Adding to the decomposition with the mathematics-in-use
technique showed several major concepts where epistemological mismatch occurs.

Ferguson’s (2012) work revealed that there are epistemological mismatches between end-
of-calculus knowledge and the following courses from other disciplines (Ferguson, 2012). For
example, there were mismatches between what teachers of calculus wanted their students
to know versus what users of calculus, such as calculus-based physics course instructors,
wanted their students to know. Our results confirm her findings, and like Raman’s (2002,
2004) findings of epistemological mismatches between pre-calculus, calculus, and analysis,
they show conclusively that even within mathematics, instructors need a new approach to
aid in mathematical coherence of their courses.

We chose to use DEs as an example setting, but there is a growing body of evidence in the
literature that our expectations for calculus knowledge are out of line with our expectations
for post-calculus courses, regardless of whether the students are following a mathematics
major track or not. Thus, in order to address the epistemological incoherence we must
explicitly focus on how we expect our students to know the content that the community
decides is important. One way to do this through thorough evaluation of the phenomenology
and the mathematics-in-use of the mathematical concepts, objects, tasks, examples, and



exposition that we show our students. Our major suggestion would be to encourage coherence
along phenomenological arcs from pre-calculus, to calculus, to post calculus, which would
require cooperation among mathematics instructors and work to identify the “big ideas” and
the concept-eliciting tasks that can codify them. Calculus is a multi-purpose course that is
intended to serve many disciplines and to support many topics in mathematics. For it to
be a functional course, we need to examine its content from many views, both post- and
pre-calculus, and in our opinion, from the perspective of epistemological coherence.
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