
ANALYZING CALCULUS CONCEPT INVENTORY GAINS IN INTRODUCTORY 
CALCULUS

Matthew Thomas, University of Arizona
Guadalupe Lozano, University of Arizona

Research in science education, particularly physics education, indicates that students in  
Interactively-Engaged classrooms are more successful on tests of basic conceptual knowledge.  
Despite this, undergraduate mathematics courses are dominated by lectures in which students  
take a passive role. Given the value of such tests in assessing students' conceptual knowledge,  
the method for measuring such change is largely unexplored. In our study, students were given  
one  such  inventory,  the  Calculus  Concept  Inventory,  in  introductory  Calculus  classes  as  a  
pretest and posttest. We address issues of how gains might be measured on this instrument using  
two techniques, and the implications of using each of these measures.
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A recent report in the MAA Notices stated that almost two thirds of college and university 
instructors surveyed agreed with the statement that “Calculus students learn best from lectures, 
provided they are clear and well-prepared” (Bressoud, 2011, p. 1). Strong support for traditional 
lecture as the primary means of undergraduate mathematics instruction remains in spite of a 
growing  body  of  research  supporting  the  claim  that  students  learn  best  when  they  are 
interactively and cognitively engaged with subject  matter  in  mathematics  and other  sciences 
(Epstein, 2007; Hake, 1998a; Prather, Rudolph, Brissenden, & Schlingman, 2009; Rhea, n.d.; 
Smith et al., 2005). These studies often use instruments called concept inventories to measure 
conceptual knowledge gains by giving the instrument as a pretest and posttest. We discuss two 
types of measures of gain on one such instrument,  the Calculus Concept Inventory,  given to 
introductory calculus students at a large southwestern university, and the differences observed by 
using each of the measures of gain.

Background
Conceptual understanding may be measured through instruments called concept inventories. 

The  first  concept  inventory,  the  Force  Concept  Inventory  (FCI),  is  a  test  in  introductory 
mechanics  which paved the way for analyzing student conceptual  understanding of the basic 
ideas  in  a  subject  area  (Hake,  1998a,  2007;  Hestenes  &  Wells,  1992;  Hestenes,  Wells,  & 
Swackhamer, 1992). Since then, many concept inventories have been written in various subject 
areas  (Allen,  2006;  Anderson,  Fisher,  &  Norman,  2002;  Carlson,  Madison,  &  West,  2010; 
Carlson, Oehrtman, & Engelke, 2010; Garvin-Doxas, Klymkowsky,  & Elrod, 2007; Libarkin, 
2008; Marbach-Ad et al., 2009, 2010; Mulford & Robinson, 2002; Prather et al., 2009; Rhoads & 
Roedel, 1999). There has been active discussion about how to interpret the results of the FCI 
(Heller  & Huffman,  1995; Henderson, 2002; Hestenes & Halloun, 1995; Huffman & Heller, 
1995). The concept inventory discussed in this paper is the Calculus Concept Inventory (CCI), 
developed by Epstein (2007).

One of the most well-known uses of the FCI was Hake's (1998a) comparison of classrooms 
which  utilized  Interactive-Engagement  (IE)  methods  with  those  which  were  described  as 
“traditional  lecture” (TL).  In his study,  Hake defined IE teaching as a collection of teaching 
methods  which  are  “designed  at  least  in  part  to  promote  conceptual  understanding  through 
interactive engagement of students in heads-on (always) and hands-on (usually) activities which 
yield  immediate  feedback  through  discussion  with  peers  and/or  instructors”  and  found 
differences between the two types of classes of almost two standard deviations (Hake, 1998a, p. 
65). The concept of an IE classroom has been further explored in physics by Hake (1998b) and in 
mathematics by Epstein (2007). IE teaching styles share features with Peer Instruction (Mazur, 
1997) including ConcepTests (Pilzer, 2001), and pure discovery learning (Paris & Paris, 2001).
Normalized Gain

Normalized gain is a measure first used by Hake (1998) in his study of Interactively-Engaged 
teaching  styles  with  the  Force  Concept  Inventory  to  measure  how much  material  has  been 
learned by students during a course. This measure is almost always used in concept inventory 
studies for measuring gains. In particular, this is the gain score that Epstein  (2007) and Rhea 
(n.d.) used to report their findings on the Calculus Concept Inventory. The normalized gain score 
is defined as

〈 g 〉=
Final−Initial
Total− Initial

and measures the fraction of unknown material learned throughout the course. For example, if a 
student correctly answered 50% of the questions on the pretest,  and 75% on the posttest,  the 



normalized gain would be <g> = 0.5, meaning that student correctly answered half of the 50% of 
the material they did not know at the beginning of the class. Normalized gain is often calculated 
using section averages of pretest and posttest scores, so each section of a course will be assigned 
a single normalized gain score. Many studies compare the effects of instructional practices on 
student learning, so the effect of interest is at the section level: normalized gains calculated at the 
section level allow one to analyze the effect of instructional practices on the entire class. One can 
also create an individual normalized gain score by using the pretest and posttest score for each 
student.  The  effect  of  computing  individual  normalized  gains  for  each  student  has  been 
investigated and compared to using section-level normalized gain scores (Bao, 2006; Coletta & 
Phillips, 2005). The two methods produce close, though not numerically identical, results. The 
advantage of considering individual-level normalized gains is that class-level variables can be 
considered along with student-level  variables such as demographics  or previous mathematics 
courses.
Item Response Theory

Item Response Theory (IRT) is a modern approach to analyzing instruments like tests or 
surveys  (Embretson & Reise, 2000). IRT is based on the idea that an instrument measures a 
single latent trait or ability, such as conceptual knowledge of calculus. While this trait cannot be 
directly observed, the effects can be observed through answers to questions. In an email to Hake, 
Mislevy (n.d.) pointed out that IRT has some benefits over the use of normalized gains such as 
handling floor and ceiling effects (e.g., students who obtain a perfect score obtain a normalized 
gain  of  1  regardless  of  initial  ability  levels).  IRT also  provides  the  opportunity  to  analyze 
individual questions as opposed to a single test score for each individual.

IRT  is  a  methodology  for  predicting  ability  levels  based  on  an  instrument  and  can  be 
leveraged to determine gain scores by measuring ability levels on the pretest and on the posttest. 
The difference between these two ability levels is the change over the course, and so measures 
gain (Wallace & Bailey, 2010). Despite the benefits of using IRT to create gains scores instead 
of using normalized gains, as Mislevy suggested to Hake for analyzing the FCI, IRT analysis is 
very rarely used in science and mathematics education research (Wallace & Bailey, 2010). The 
FCI has been analyzed using IRT (Wang & Bao, 2010), and comparisons of IRT and normalized 
gain methods have been made in astronomy (Wallace & Bailey, 2010). An IRT analysis of the 
CCI has not been published, nor have multiple measures of gain been studied for this instrument. 
Our study contributes to the existing literature in both of these areas.
Purpose of Study

Our  study  builds  on  previous  studies  by  considering  the  implications  of  using  both 
normalized gain and IRT to measure gains on CCI. Previous studies have investigated the effects 
of instructional practices on student learning by using concept inventory pretests and posttests. In 
order  for  the  connections  between  instructional  choices  and  learning  gains  to  be  studied,  a 
method for measuring learning gains needs to be established. It is also important that these gain 
scores  accurately  reflect  learning  since  they  may  be  used  for  practical  decisions,  such  as 
administrative decisions involving the careers of teachers. If a teacher's career is affected by how 
much their students' scores improve on an exam, it is worth considering that there are multiple 
ways to measuring these gains which may produce different results.

Methods & Analysis
The subjects in this study were Calculus I students at a large southwestern university. All Fall 

2010 Calculus I students at the university were required to take the Calculus Concept Inventory 
as a pretest and posttest as part of the course, and consenting students had their scores collected 



along with demographic information. The pretest was graded for course credit on completion, 
and the posttest scores were factored into students' final grades. Of the 880 students who took the 
pretest and 668 students who took the posttest, 507 students took both tests and consented to 
participate  in the study.  Of these students, 482 had non-zero scores on the CCI pretest,  CCI 
posttest, and the final exam, meaning they did not miss any of the tests. There were 26 sections, 
with  a  maximum  capacity  of  35  in  each  section.  On  average,  18.5  students  per  section 
participated in the study, ranging from 10 to 26.

Analysis was done using a combination of the software tools BILOG-MG and R. These are 
commonly used software tools for conducting IRT analysis (BILOG-MG) and general purpose 
statistical analysis (R).

Results and Implications
Normalized Gain Scores

In his 1998a study, Hake grouped sections by their normalized gain, <g>, scores: “low-g” 
sections were defined as those with <g> values less than 0.3, “medium-g” as those between 0.3 
and 0.7, and “high-g” as those above 0.7 (p. 65). In his study, Epstein (2007) gave the CCI to 
1100 students at 12 American universities and 1 university in Finland. He found <g> values 
largely  clustered  between  0.15  and  0.23,  similar  to  the  scores  in  traditional  lecture  physics 
classes on the FCI. A large midwestern research university with a department-wide IE focused 
teaching style reported an average <g> score of 0.35 among their 51 sections, with a range of 
0.21 to 0.44 (Rhea, n.d.). Ten of the sections had <g> scores above 0.40.

The  mean  normalized  gain  for  the  entire  participant  group  at  the  large,  southwestern 
university  where  our  study  was  conducted  was  0.25,  meaning  that  25%  of  the  previously 
unknown material was learned during the course. Normalized gain scores ranged from 0.14 to 
0.36. By Hake's definition, 4 of the 26 sections had medium-g scores, and the remaining 22 had 
low-g scores.

Individual normalized gain scores were then computed so that a comparison with IRT gains 
could be made, since IRT gains are computed at the individual level. A histogram is given in 
Figure 1. The difference between using individual normalized gains averaged by class and class 
average normalized gains makes almost no difference in this data set, as the mean was slightly 
higher, but still 0.25 when rounded to two decimal places.
IRT Gains

Item Response Theory allows for a variety of models to be created. The Rasch model is the 
simplest  of  these,  estimating  a  single  parameter  for  each  item.  In  the  Rasch  model,  the 
probability of an individual, i, correctly answering question p is given by

P ( X p i=1∣θ p ,bi )=
exp [θ p−b i ]

1+exp [θ p−bi ]

which results in a logistic curve for each item (Embretson & Reise, 2000). For the CCI pretest 
under the Rasch model, the plot of curves for each item is given in Figure 2. The interpretation is 
that for any level of conceptual knowledge of calculus (θ), there is a corresponding item-specific 
probability of correctly answering that item. The difficulty of item i,  bi, is the ability which is 
required  for  a  50% chance  of  correctly  answering  the  question.  For  the  Rasch  model,  the 
difficulty of each item uniquely determines this curve, called the item characteristic curve.

One  can  introduce  a  different  model  by  introducing  a  new  parameter,  α,  called  the 
discrimination. This model is given by the formula 



P ( X p i=1∣α , θ p ,bi )=
αexp [ θ p−bi ]

α(1+exp [θ p−bi ])

The effect of the discrimination parameter is to change the slopes of all the item characteristic 
curves. The larger the value of α, the steeper the slope of the curve, and the more discriminating 
the item. This model is known as the one parameter logistic model (1PL). A plot of the item 
characteristic curves for the CCI pretest is given in Figure 3. 

The two parameter  logistic  model  (2PL) relaxes the condition that  the discrimination 
parameter must be the same for all items, resulting in the following model.

P ( X p i=1∣α i , θ p ,bi)=
αi exp [θ p−b i ]

αi(1+exp[ θ p−bi ])

The graphs of item characteristic curves for the CCI under the 2PL model is given in Figure 4.
Looking at Figure 4, it is apparent that the behavior of the last item on the test is counter to 

what one would expect for a test measuring a single construct: the item characteristic curve for 
item 22 is decreasing, indicating that as one's conceptual knowledge of calculus increases, the 
likelihood of answering the item correctly decreases. The same item was also a poor fit on the 
posttest, where the questions were reordered. This is seen in Figure 5, where item 20 does not fit  
the pattern of the other items well. Since no explanation for this behavior was apparent, the item 
was  removed  from  future  analysis.  Using  the  method  proposed  by  Bejar  (1980),  it  was 
determined that the remaining items were assessing the same construct.

To  ensure  that  the  pretest  and  posttest  scores  were  comparable,  item  parameters  were 
estimated from the pretest, and these item parameters were used to estimate individual ability 
levels for both pretest and posttest students, following the method used by Wallace and Bailey 
(2010). Therefore, a score of 0 was a common score, interpretable as the ability of an average 
student taking the pretest. A student who is estimated to have an ability level of 0 on the posttest  
would then have an ability comparable to an average student at the beginning of the course.
Comparison of the Two Gain Models

A comparison of the section average normalized gains and IRT gains averaged by section is 
displayed in Figure 6. The two measures of gain are strongly correlated, r(21) = 0.92, p < 0.01, 
so 86% of the variation in one measure is explained by the other. This is low if the two quantities 
are actually measuring the same trait – the knowledge gained over the course. At the student 
level, the correlation between the normalized gains and IRT gains is similarly correlated, r(480) 
= 0.92, p < 0.01, suggesting that 15% of variation of one measure is still unaccounted for by the 
other measure. This relationship is shown in Figure 7. If one were to interpret one of the two gain 
measures (IRT or normalized gains) as “correct,” then using the other measure would introduce 
error. This suggests that, unless one measure can be objectively preferred to the other, the two 
measures provide different information, and answer different questions.

Practically, one of the fundamental differences between normalized gain scores and IRT gain 
scores is the dependence of the normalized gain score on the pretest score. Given two classes 
with the same difference between pretest and posttest scores, the normalized gain will be larger 
for  the  class  with  the  higher  pretest  score  (Wallace  &  Bailey,  2010).  Consider  a  concept 
inventory with 22 questions.  Suppose a class with a pretest  average of 18 points achieves a 
posttest average of 20 points, and another class with a pretest average of 11 points achieves a 
posttest average of 13 points. The normalized gain score would be higher for the first class more 
than the second. Those 2 points were likely more difficult to achieve than the 2 points achieved 
by the second class since the pool of available questions to improve upon is smaller for the first 
class. Additionally, if the difficulties of the questions are distributed roughly normally, a class 



with a medium pretest is likely to encounter questions which are not far beyond their ability, 
while  a high achieving class may encounter  questions which are farther  from their  (current) 
ability. In this way, the normalized gains are rewarding classes in a reasonable way.

From a theoretical point of view, the normalized gain is a test-specific measure of gain. The 
normalized gain is the total learned out of the total that could be learned, implying a maximum 
knowledge level. Once a student has correctly answered all of the questions on the instrument, 
the total knowledge has been achieved for that construct. IRT does not have this type of frame of 
reference of total knowledge. In this way, normalized gains are a measure much more closely 
tied to a particular instrument than IRT gains. Consider the following example. Suppose version 
1 of a concept inventory has 2 questions which are correctly answered by everyone who takes the 
test,  and version 2 of  the concept  inventory replaces  those  2 items  with 2 items  which are 
answered incorrectly by everyone on the test. In an IRT analysis, this change would not make 
any  difference  since  these  2  items  provide  no  information  that  allows  individuals  to  be 
compared. In a normalized gain analysis of the concept inventories, however, the normalized 
gains  will  be  different.  If  the  concept  inventory had 22 questions,  a  change from 14 to 16 
(<g>=.25) on version 1 would become a change from 12 to 14 (<g>=0.2) on version 2. These 
scores are still worth considering and can reveal a great deal about gains during a course, but the 
dependence  on  the  instrument  itself  should  not  be  ignored.  This  is  also  noteworthy  when 
comparing  normalized  gains  on  the  FCI  to  normalized  gains  on  the  CCI.  These  are  two 
completely different instruments, and so comparing normalized gains on one with the other may 
not be reasonable. In particular, useful cutoffs for high-, medium-, and low-<g> scores may not 
transfer from one test to the other.

Conclusions
Measuring gains using a pretest and posttest appears like a simple task, but the two measures 

investigated here produce quite different results. Both IRT gains and normalized gains aim to 
determine the amount of learning that has taken place during a course, but they are measuring 
this quantity in different ways, producing different results. A priori, there is no objective way to 
chose one measure as preferred to the other, as each have advantages. IRT produces measures 
which are test and population independent, but are more difficult to interpret than normalized 
gain scores. IRT's test independence is an advantage. With IRT, if a different test were created 
which  measures  the  same construct  as  the CCI and were given to  the same population,  the 
individual ability estimates would remain unchanged. This is not the case for a normalized gain 
analysis. The maximum is achieved when the student has successfully mastered the material that 
is on the test. While much can be learned from studies of other concept inventories, he CCI is 
measuring  mathematics-specific  ability,  and  so  needs  to  be  studied  further.  The  difference 
between normalized gains and IRT gains demonstrates that we can assess gains on the CCI in 
different ways and achieve different results, highlighting the need for attention to the type of gain 
score used.

Plans for Future Research
The Calculus Concept Inventory plays an important role in our study as an externally created 

and validated measure  of student  understanding of the concepts  of introductory calculus.  To 
build upon the analysis  of gains presented here, hierarchical linear models will be created to 
incorporate  student-level  variables  such  as  demographic  information  and  mathematics 
background, and final exam scores will  be used to consider the relationship with potentially 
different types of knowledge.
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Figures
 

Figure 1: Histogram of Normalized Gains
Figure 2: Rasch Model for CCI Pretest

 

Figure 3: 1PL Model for CCI Pretest

Figure 4: 2PL Model for CCI Pretest

 



Figure 5: 2PL Model for CCI Posttest

 

Figure 6: Normalized Gain vs. IRT Gain by 
Section

 

Figure 7: Individual Normalized Gains vs. IRT 
Gains
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