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infection of murine cells (15) and transgenic 
mice expressing human CD4 (16) and pro- 
vides a rationale for transgenic approaches to 
developing animal models of HIV disease. 
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Statistical Learning by 8-Month-Old Infants 
Jenny R. Saffran, Richard N. Aslin, Elissa L. Newport 

Learners rely on a combination of experience-independent and experience-dependent 
mechanisms to extract information from the environment. Language acquisition involves 
both types of mechanisms, but most theorists emphasize the relative importance of 
experience-independent mechanisms. The present study shows that a fundamental task 
of language acquisition, segmentation of words from fluent speech, can be accom- 
plished by 8-month-old infants based solely on the statistical relationships between 
neighboring speech sounds. Moreover, this word segmentation was based on statistical 
learning from only 2 minutes of exposure, suggesting that infants have access to a 
powerful mechanism for the computation of statistical properties of the language input. 

During early development, the speed and 
accuracy with which an organism extracts 
environmental information can be ex- 
tremely important for its survival. Some 
species have evolved highly constrained 
neural mechanisms to ensure that environ- 
mental information is properly interpreted, 
even in the absence of experience with the 
environment (1). Other species are depen- 
dent on a period of interaction with the 
environment that clarifies the information 
to which attention should be directed and 
the consequences of behaviors guided by 
that information (2). Depending on the 
developmental status and the task facing a 
particular organism, both experience-inde- 
pendent and experience-dependent mecha- 
nisms may be involved in the extraction of 
information and the control of behavior. 

In the domain of language acquisition, 
two facts have supported the interpretation 
that experience-independent mechanisms 
are both necessary and dominant. First, 
highly complex forms of language produc- 
tion develop extremely rapidly (3). Second, 
the language input available to the young 
child is both incomplete and sparsely rep- 
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resented compared to the child's eventual 
linguistic abilities (4). Thus, most theories 
of language acquisition have emphasized 
the critical role played by experience-inde- 
pendent internal structures over the role of 
experience-dependent factors (5). 

It is undeniable that experience-depen- 
dent mechanisms are also required for the 
acquisition of language. Many aspects of a 
particular natural language must be ac- 
quired from listening experience. For exam- 
ple, acquiring the specific words and pho- 
nological structure of a language requires 
exposure to a significant corpus of language 
input. Moreover, long before infants begin 
to produce their native language, they ac- 
quire information about its sound properties 
(6). Nevertheless, given the daunting task 
of acquiring linguistic information from lis- 
tening experience during early develop- 
ment, few theorists have entertained the 
hypothesis that learning plays a primary 
role in the acquisition of more complicat- 
ed aspects of language, favoring instead 
experience-independent mechanisms (7). 
Young humans are generally viewed as 
poor learners, suggesting that innate fac- 
tors are primarily responsible for the ac- 
quisition of language. 

Here we investigate the nature of the 
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experience-dependent factors involved in 
language acquisition. In particular, we ask 
whether infants are in fact better learners 
than has previously been assumed, thus po- 
tentially reducing the extent to which ex- 
perience-independent structures must be 
posited. The results demonstrate that in- 
fants possess powerful mechanisms suited to 
learning the types of structures exemplified 
in linguistic systems. Experience may there- 
fore play a more important role in the ac- 
quisition of language than existing theories 
suggest. 

One task faced by all language learners is 
the segmentation of fluent speech into 
words. This process is particularly difficult 
because word boundaries in fluent speech 
are marked inconsistently by discrete acous- 
tic events such as pauses (8). Although it 
has recently been demonstrated that 
8-month-old infants can segment words 
from fluent speech and subsequently recog- 
nize them when presented in isolation (9), 
it is not clear what information is used by 
infants to discover word boundaries. This 
problem is complicated by the variable 
acoustic structure of speech across different 
languages, suggesting that infants must dis- 
cover which, if any, acoustic cues correlated 
with word boundaries are relevant to their 
native language (10); there is no invariant 
acoustic cue to word boundaries present in 
all languages. 

One important source of information 
that can, in principle, define word bound- 
aries in any natural language is the statisti- 
cal information contained in sequences of 
sounds. Over a corpus of speech there are 
measurable statistical regularities that dis- 
tinguish recurring sound sequences that 
comprise words from the more accidental 
sound sequences that occur across word 
boundaries ( 1). Within a language, the 
transitional probability from one sound to 
the next will generally be highest when the 
two sounds follow one another within a 
word, whereas transitional probabilities 
spanning a word boundary will be relatively 
low (12). For example, given the sound 
sequence pretty#baby, the transitional prob- 
ability from pre to ty is greater than the 
transitional probability from ty to ba. Pre- 
viously, we showed that adults and children 
can use information about transitional 
probabilities to discover word boundaries in 
an artificial language corpus of nonsense 
words presented as continuous speech, with 
no acoustic cues to word boundaries (13). 

We asked whether 8-month-old infants 
can extract information about word bound- 
aries solely on the basis of the sequential 
statistics of concatenated speech. We used 
the familiarization-preference procedure de- 
veloped by Jusczyk and Aslin (9). In this 
procedure, infants are exposed to auditory 

material that serves as a potential learning 
experience. They are subsequently present- 
ed with two types of test stimuli: (i) items 
that were contained within the familiariza- 
tion material and (ii) items that are highly 
similar but (by some critical criterion) were 
not contained within the familiarization 
material. During a series of test trials that 
immediately follows familiarization, infants 
control the duration of each test trial by 
their sustained visual fixation on a blinking 
light (14). If infants have extracted the 
crucial information about the familiariza- 
tion items, they may show differential du- 
rations of fixation (listening) during the 
two types of test trials (15). We used this 
procedure to determine whether infants can 
acquire the statistical properties of sound 
sequences from brief exposures. 

In our first experiment, 24 8-month-old 
infants from an American-English language 
environment were familiarized with 2 min 
of a continuous speech stream consisting of 
four three-syllable nonsense words (hereaf- 
ter, "words") repeated in random order 
(16). The speech stream was generated by a 
speech synthesizer in a monotone female 
voice at a rate of 270 syllables per minute 
(180 words in total). The synthesizer pro- 
vided no acoustic information about word 
boundaries, resulting in a continuous stream 
of coarticulated consonant-vowel syllables, 
with no pauses, stress differences, or any 
other acoustic or prosodic cues to word 
boundaries. A sample of the speech stream 
is the orthographic string bidakupadotigola- 
bubidaku.... The only cues to word bound- 
aries were the transitional probabilities be- 
tween syllable pairs, which were higher 
within words (1.0 in all cases, for example, 
bida) than between words (0.33 in all cases, 
for example, kupa). 

To assess learning, each infant was pre- 
sented with repetitions of one of four three- 
syllable strings on each test trial. Two of 
these three-syllable strings were "words" 
from the artificial language presented dur- 
ing familiarization, and two were three-syl- 
lable "nonwords" that contained the same 
syllables heard during familiarization but 
not in the order in which they appeared as 
words (17). 

The infants showed a significant test- 
trial discrimination between word and non- 

word stimuli (18), with longer listening 
times for nonwords (Table 1). This novelty 
preference, or dishabituation effect, indi- 
cates that 8-month-olds recognized the dif- 
ference between the novel and the familiar 
orderings of the three-syllable strings. Thus, 
8-month-old infants are capable of extract- 
ing serial-order information after only 2 
min of listening experience. 

Of course, simple serial-order informa- 
tion is an insufficient cue to word bound- 
aries. The learner must also be able to ex- 
tract the relative frequencies of co-occur- 
rence of sound pairs, where relatively low 
transitional probabilities signal word 
boundaries. Our next experiment examined 
whether 8-month-olds could perform the 
more difficult statistical computations re- 
quired to distinguish words (that is, recur- 
rent syllable sequences) from syllable strings 
spanning word boundaries (that is, syllable 
sequences occurring more rarely). To take 
an English example, pretty#baby, we wanted 
to see if infants can distinguish a word- 
internal syllable pair like pretty from a word- 
external syllable pair like ty#ba. 

Another 24 8-month-old infants from 
an American-English language environ- 
ment were familiarized with 2 min of a 
continuous speech stream consisting of 
three-syllable nonsense words similar in 
structure to the artificial language used in 
our first experiment (19). This time, how- 
ever, the test items for each infant consisted 
of two words and two "part-words." The 
part-words were created by joining the final 
syllable of a word to the first two syllables of 
another word. Thus, the part-words con- 
tained three-syllable sequences that the in- 
fant had heard during familiarization but 
statistically, over the corpus, did not corre- 
spond to words (20). These part-words 
could only be judged as novel if the infants 
had learned the words with sufficient spec- 
ificity and completeness that sequences 
crossing a word boundary were relatively 
unfamiliar. 

Despite the difficulty of this word versus 
part-word discrimination, infants showed a 
significant test-trial discrimination between 
the word and part-word stimuli (21), with 
longer listening times for part-words (Table 
1). Thus, 2 min of exposure to concatenat- 
ed speech organized into "words" was suffi- 

Table 1. Mean time spent listening to the familiar and novel stimuli for experiment 1 (words versus 
nonwords) and experiment 2 (words versus part-words) and significance tests comparing the listening 
times. 

Mean listening times (s) 
Experiment Matched-pairs t test 

Familiar items Novel items 

1 7.97 (SE = 0.41) 8.85 (SE = 0.45) t(23) = 2.3, P < 0.04 
2 6.77 (SE = 0.44) 7.60 (SE = 0.42) t(23) = 2.4, P < 0.03 
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cient for 8-month-old infants to extract 
information about the sequential statistics 
of syllables. Moreover, this novelty prefer- 
ence cannot be attributed to a total lack of 
experience with the three-syllable sequenc- 
es forming part-words, as was the case with 
the nonwords in the first experiment. Rath- 
er, infants succeeded in learning and re- 
membering particular groupings of three- 
syllable strings-those strings containing 
higher transitional probabilities surrounded 
by lower transitional probabilities. 

The infants' performance in these stud- 
ies is particularly impressive given the im- 
poverished nature of the familiarization 
speech stream, which contained no pauses, 
intonational patterns, or any other cues 
that, in normal speech, probabilistically 
supplement the sequential statistics inher- 
ent in the structure of words. Equally im- 
pressive is the fact that 8-month-old in- 
fants in both experiments were able to 
extract information about sequential sta- 
tistics from only 2 min of listening expe- 
rience. Although experience with speech 
in the real world is unlikely to be as 
concentrated as it was in these studies, 
infants in more natural settings presum- 
ably benefit from other types of cues cor- 
related with statistical information. 

Our results raise the intriguing possibil- 
ity that infants possess experience-depen- 
dent mechanisms that may be powerful 
enough to support not only word segmen- 
tation but also the acquisition of other as- 
pects of language. It remains unclear wheth- 
er the statistical learning we observed is 
indicative of a mechanism specific to lan- 
guage acquisition or of a general learning 
mechanism applicable to a broad range of 
distributional analyses of environmental in- 
put (22). Regardless, the existence of com- 
putational abilities that extract structure so 
rapidly suggests that it is premature to assert 
a priori how much of the striking knowl- 
edge base of human infants is primarily a 
result of experience-independent mecha- 
nisms. In particular, some aspects of early 
development may turn out to be best char- 
acterized as resulting from innately biased 
statistical learning mechanisms rather than 
innate knowledge. If this is the case, then 
the massive amount of experience gathered 
by infants during the first postnatal year 
may play a far greater role in development 
than has previously been recognized. 
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21. There were no significant differences between the 
infants in condition A and condition B: t(22) = 0.49. 
The data from the two groups were thus combined 
for the other analyses. 

22. For example, this same general mechanism could be 
used to find an object, such as a human face, in the 
environment. 
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their help with various aspects of this research, and 
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draft. Supported by an NSF predoctoral fellowship 
(J.R.S.), NSF grant SBR9421064 (R.N.A.), and NIH 
grant DC00167 (E.L.N.). The parents of all partici- 
pants gave informed consent. 
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