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Understanding the determinants of human health and disease is overwhelmingly complex, par-
ticularly for common, late-onset, chronic disorders, such as obesity and diabetes. Elucidating the
genetic and environmental factors that influence susceptibility to disruptions in energy homeo-
stasis and metabolic regulation remain a challenge, and progress will entail the integration of
multiple assessments of temporally dynamic environmental exposures in the context of each in-
dividual’s genotype. To meet this challenge, researchers are increasingly exploring the epigenome,
which is the malleable interface of gene-environment interactions. Epigenetic variation, whether
innate or induced, contributes to variation in gene expression, the range of potential individual
responses to internal and external cues, and risk for metabolic disease. Ultimately, advancement
in our understanding of chronic disease susceptibility in humans will depend on refinement of
exposure assessment tools and systems biology approaches to interpretation. In this review, we
present recent progress in epigenetics of human obesity and diabetes, existing challenges, and the
potential for new approaches to unravel the complex biology of metabolic dysregulation.
(Endocrinology 153: 1025–1030, 2012)

The obesity has reached epidemic proportions through-
out the world, and the rapid rise in prevalence rates has

made this a major focus of public health concern. The
environment has inarguable impact on normal develop-
ment and health throughout the lifespan. Some have sug-
gested that the environment plays a role in nearly 85% of
all diseases (1). Our modern living environment may even
play a dominant role in the current epidemic of obesity and
diabetes (2). Increased accessibility to low-cost food, the
end of obligated daily physical activity for survival, and a
growing reliance on technology are some of the relevant
components of modern living (2–4). In addition to the
importance of diet and activity, growing concern sur-
rounds the unavoidable exposure to a wide range of man-
made chemicals in industrialized countries. Other envi-
ronmental exposures of interest can occur through
ambient particles, water, food, and use of consumer or
personal care products (5). Endocrine-disrupting chemi-

cals, often used in the production of plastics and resins,
are ubiquitous, and may interfere with insulin action,
growth, and metabolic rate, among other physiological
functions (6). Some chemical substances may have low-
dose effects, meaning that the typical exposure levels,
despite being below the Environmental Protection
Agency’s standard toxicity testing, may have relevant
biological effects (5).

Advances in sequencing techniques have revealed a new
level of complexity with the use of metagenomic analysis
to study the complex ecosystems of the human gut (7–9).
Our internal ecosystem is adaptable, and continual shifts
in phyla occur in response to changes in the host diet (10).
Recent studies have shown profound changes in the com-
position and metabolic function of the gut microbiota in
obese individuals (11–15). In turn, each host’s unique bi-
ological relationship with its gut microbiota may influence
an individual’s risk of disease (16, 17).
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The scope of what constitutes our environment and
complexity of understanding its biological impact on hu-
man health and disease is rapidly emerging. Despite the
substantial advances that have been made in the ability to
sequence and map the human genome, the other half of the
gene-environment equation has been much more difficult
to define, much less to quantify (18). Our inability to ac-
curately assess relevant exposures prevents the clear de-
lineation of each exposure’s specific contribution to dis-
ease or condition. The study of the epigenome using new
approaches offers great hope in facing the daunting task of
understanding complex gene-environment interactions.

Epigenetics

Epigenetics is the study of heritable changes in gene ex-
pression that occur without changes in DNA sequence
(19). The genome is organized in a layered framework, the
context of which influences accessibility and function.
Each of the over 200 different human cell types has es-
sentially the same genomic sequence in a given individual.
The epigenome varies among different cell types and is
more dynamic compared with the largely static genome
(20). Cellular phenotype and responsiveness to external
cues are governed through variations in DNA methyl-
ation, histone tail modifications, and chromatin binding.
DNA methylation and histone modifications are two ma-
jor epigenetic regulators in mammalian cells, which are
functionally linked in transcription and may provide a
mechanism for the stable propagation of gene activity
from one generation of cells to the next (21). Gene and
protein expression are also posttranscriptionally regu-
lated by micro-RNA and other small RNA, which have
greater temporal flux, making interpretation variability of
these more formidable (22). Because exogenous influences
can induce epigenetic modifications, epigenetic variation
among individuals may be genetically or environmentally
determined (23).

The term epigenetics was first coined by Conrad Wad-
dington in 1942 to mean the study of causal mechanisms
of development, which bring phenotype into being (24). In
addition, he emphasized the importance of developmental
processes, interrelatedness, and the dynamic system of
genes and gene expression. Not surprisingly, the potential
for adverse environmental impact on normal developmen-
tal is well recognized and perhaps best exemplified by the
relationship between teratogens and congenital anoma-
lies. More recently, a significant mass of epidemiological
evidence has linked early life conditions and poor fetal
growth with adult-onset diseases, such as cardiovascular
disease and metabolic disorders. This hypothesis, de-

scribed by David Barker and often referred to as the Barker
hypothesis, arose from epidemiological observations link-
ing low birth weight and risk for death from cardiovas-
cular disease later in life (25). Since then, many others
using different populations have made similar observa-
tions that early adverse conditions are associated with di-
abetes and metabolic dysfunction later in life (26). In ad-
dition, a large number of rodent and nonprimate animal
models have been used to explore the phenomenon of de-
velopmental origins of adult disease [see review by Seki
and colleagues (27) in this issue], many of which demon-
strate phenotypic changes in offspring and tissue-specific
changes in gene expression. Not only do these provide
significant insight into the molecular changes associated
with adverse intrauterine conditions, but they also impli-
cate an epigenetic basis for common chronic disease.

Direct translation of findings from experimental ani-
mal studies is not assured, and confirmation in human
subjects is not an effortless endeavor. To date, only a lim-
ited number of studies have documented direct evidence of
epigenetic changes in association with suboptimal early
life conditions in humans. Heijmans et al. (28) in a fol-
low-up study of the Dutch Famine Cohort demonstrated
subtle differences (�5% decrease) in methylation at the
IGF2 differentially methylated region in individuals that
had been exposed prenatally to maternal famine and their
unexposed siblings. Changes in DNA methylation in um-
bilical cord blood cells have been documented, but these
are either limited to global methylation changes or include
only a limited number of human subjects (29–31). Using
a restriction enzyme-based assay, our group has examined
genome-wide changes in DNA methylation associated
with intrauterine growth restriction compared with con-
trols in a single population of multipotent hematopoietic
stems cells also from a small group of neonates (32).
Changes in DNA methylation were found in a restricted
number of loci, including the hepatocyte nuclear factor 4�

(HNF4A) gene, a well-known diabetes-associated gene.
Using a large prospective cohort, Godfrey et al. (33) as-
sessed DNA methylation in a set of candidate gene pro-
moters using umbilical cords (tissue, not blood) and found
positive associations between hypermethylation of RXR�

and NOS3 with childhood adiposity at 9 yr of age. The
interpretation of these findings in samples of mixed cell
types and whether such changes have functional signifi-
cance has come into question (34). Furthermore, in a fairly
large cohort of mono- and dizygotic adolescent and mid-
dle-aged twin pairs, methylation levels of H19 and IGF2
differentially methylated regions in whole blood samples
were more attributable to heritable factors and single-nu-
cleotide polymorphisms, rather than environmental or
stochastic events (35).

1026 Slomko et al. Minireview Endocrinology, March 2012, 153(3):1025–1030

The Endocrine Society. Downloaded from press.endocrine.org by [${individualUser.displayName}] on 20 January 2014. at 13:09 For personal use only. No other uses without permission. . All rights reserved.



Potential hindrance to identification of direct links be-
tween epigenetic modification and environment in previ-
ous human studies can be partially attributed to use of
tools that limit the evaluation of DNA methylation alter-
ations to specifically cytosine that precede a guanine (CpG
methylation). Previously, DNA methylation in mamma-
lian cells was thought to occur only in the CpG regions.
However, genome-wide, single-base-resolution maps of
methylated cytosine from both human embryonic stem
cells and fetal fibroblasts have identified non-CpG meth-
ylation in human cell lines (36). In embryonic stem cells,
nearly one quarter of all methylation identified were in
non-CG context, which disappeared upon induction of
differentiation and was restored only in pluripotent stem
cells. In skeletal muscle biopsies from both type 2 diabetes
mellitus and impaired glucose tolerance subjects, hy-
permethylation of peroxisome proliferator-activated
receptor � coactivator 1-� (PGC-1�) promoter region,
a regulator of mitochondrial function, was seen using a
genome-wide promoter analysis with methylated DNA
immunoprecipitation combined with microarray technol-
ogy (37).These epigenetic alterationswereassociatedwith
reduced mitochondrial density and increased plasma free
fatty acid concentration in the same subjects. Further-
more, skeletal muscle cultures derived from nondiabetic
male subjects demonstrated significant increases in non-
CpG methylation at the PGC-1� promoter region when
exposed to free fatty acids palmitate and oleate. Taken
together, these findings highlight the impact of acute
changes in the metabolic environment on epigenetic
changes that ultimately alter genetic expression. The exact
functional role of non-CpG methylation is not well un-
derstood and requires further investigation. However, the
propensity to persist in embryonic stem cells before dif-
ferentiation and in pluripotental stem cells makes them
ideal candidates for dysregulation during early develop-
ment. Non-CpG methylation may provide greater clues to
the direct linkage between genes, environment, and func-
tional expression.

Other human studies have also identified personalized
epigenomic signatures characterized by dynamic and sta-
ble variably methylated regions (VMR) that can be used as
potential strategies for identifying patients at risk of com-
mon disease as well as for the identification of potential
genomic regions of environmental vulnerability (38). In an
attempt to identify VMR with covariation with body mass
index, 74 random samples from the Age, Gene/Environ-
ment Susceptibility (AGES) study underwent comprehen-
sive high-throughput array-based relative methylation
analyses to compare 4.5 million CpG sites genome wide.
Individuals included in the study were between 69 and 96

yr of age who had DNA samples obtained from two time
points, about 11 yr apart. The study identified four VMR
that showed covariation with body mass index consis-
tently over a decade near genes previously implicated in
regulation of body weight or diabetes. VMR are regions of
extreme variability across individuals defined by 10 or
more consecutive probes with an average SD (median ab-
solute deviation) of more than 0.125. VMR are classified
as stable when they remain static over time within indi-
viduals and as dynamic when they have high intra-indi-
vidual differences. Stable VMR may represent the actual
epigenetic changes associated with the disease process,
whereas dynamic VMR may represent the potentially vul-
nerable regions that are more prone to environmental ef-
fects over a time course. Applying these findings in the
setting of other disease processes may provide a better
understanding of the epigenetic basis for developmental
origins of obesity and metabolic disease.

Existing Challenges to Studying the
Epigenomics of Human Disease

The assessment of environmental determinants of health
and disease is clearly complex. Numerous endocrine-dis-
rupting chemicals associated with increasing prevalence of
obesity have been identified. These obesogens act by dys-
regulating lipid metabolism, basal metabolic rate, and reg-
ulation of appetite to promote obesity (6). These ubiqui-
tous substances are found in plastics, personal care
products, and food packaging and may be ingested, in-
haled, or absorbed through the skin. For instance, epide-
miological studies have shown a direct correlation be-
tween the increased presence of mono-benzyl and mono-
ethylhexyl phthalates, a family of man-made compounds
used in the manufacture of plastics, in urine and waist
circumference in men (39, 40). Bisphenol A, another com-
ponent of polycarbonate plastics and epoxy resins, has
been shown to leach from the lining of food cans, baby
bottles, dental sealants, and deposits, such that humans
are routinely being exposed to these chemicals (6). Evi-
dence of human exposure has been reported in urine, se-
rum, breast milk, and maternal and fetal tissues (6). An-
imal studies have linked bisphenol A to numerous adverse
health effects including impaired fertility and insulin re-
sistance, and human studies are underway. Maternal ex-
posure to several other chemical substances in pregnancy
has been associated with increased body mass index in
offspring (40–42). The mechanisms by which these chem-
icals influence the health of the offspring is not clear, but
disruption of normal epigenetic regulation is likely to be
involved.
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Environmental health science is dedicated to the study
of the impact of many environmental factors and their
capacity for causation of disease. Since the first half of the
20th century, exposure-response relationships have been
investigated for their potential role in occupation-related
disease (43). Unfortunately, legal sanctions emerging from
regulatory noncompliance with standards set by Occupa-
tional Safety and Health Administration and Environmen-
tal Protection Agency provides a great disincentive for
companies to measure personal exposures. As a result,
exposure science has shifted increasingly to predict expo-
sure from models based on observational data, spatiotem-
poral determinants, or sampling of ambient air and water
(43). Although the challenge of assessment and accurate
measurement of environmental exposures is daunting, the
nearly continuous development of innovative technolo-
gies offers great promise. The successful application of
high-throughput technologies can be seen in application
of DNA sequence analysis for genome-wide association
studies (GWAS). GWAS have identified hundreds of sin-
gle-nucleotide polymorphisms associated with many com-
mon diseases and traits (44). Although many of the loci
identified are low-penetrant genes with low relative risk
that may not be clinically relevant, results from GWAS are
generally more highly regarded then environmental expo-
sure studies revealing similar or even slightly higher rela-
tive risks. This has been attributed to the lower error rate
of genotyping techniques and the low reproducibility of
environmental exposure assessment in human popula-
tions (45).

Christopher Wild, a molecular epidemiologist, recently
coined the term exposome to help envisage an equitable
representation of both sides of the gene-environment in-
teraction and to counterbalance the prevailing dominance
of the genome (18). The exposome encompasses the to-
tality of a lifetime of environmental exposures beginning
at conception, which influence the internal cellular and
chemical milieu of an individual. Low-level exposures,
which may fluctuate of time, have the potential to exact
their impact over long periods or have cumulative effects
when combined with other exposures. Not only does the
exposome vary among individuals, but also the influence
of each exposure is construed within the context of an
untold number of potential responses to that exposure as
dictated by the individual’s genotype. However, unlike the
high precision and reproducibility of genomic technolo-
gies, currently available methods for exposure assessment
are rudimentary. Indeed, tools that enable accurate assess-
ment of the exposome will have great implication in biomed-
ical science and for the prediction of human disease.

For assessment of the cumulative effects of environ-
mental exposures and prediction of individual disease sus-

ceptibility, epigenetic-based assays offer significant ad-
vantages as biomarkers if the challenges of study design,
validation, and interpretation can be overcome. The evi-
dence of an epigenetic basis for chronic adult disease, like
obesity and diabetes, is limited not only by a number of
practical issues related to study design (46) but also by
difficulty in the interpretation of epigenetic variations. In
2005, Fraga et al. (47) published a landmark paper dem-
onstrating increasing epigenetic discordance between mo-
nozygotic twins with advancing age. The epigenetic drift
associated with aging is postulated to be a result of dif-
ferences in environmental exposures. As a result, variation
in epigenetic marks may be due to genotype, a countless
number of environmental exposures, or stochastic events
(20, 47, 48).

Biomarkers are used in many clinical settings to identify
points between exposure and disease. Meaningful bio-
markers are specific and sensitive and reliably mark a par-
ticular biological endpoint (49). Epigenetic assays that in-
clude measures of cellular toxicity, chromosomal
alterations, and changes in expression can be used to mea-
sure an interval between low-dose exposure and disease
onset (45). -Omics is a term that generally refers to the
molecular techniques that generate a complete, or near-
complete, set of biological molecules with high-through-
put techniques (50, 51). These powerful tools provide
comprehensive analysis of the cellular complement of spe-
cific constituents, such as DNA, RNA, proteins, interme-
diary metabolites, etc. (52). In the near future, integration
of layered -omic technologies could allow for quantifica-
tion of the effects of multiple, cumulative exposures and an
individual’s biological responsiveness to those exposures.
If these techniques could be leveraged together, they have
the potential to provide tools that quantify an individual’s
susceptibility to disease as well as predict their inherent
protection against disease.

For epigenetic biomarkers to be a useful tool to distin-
guish points along the continuum of exposure to disease,
normal or healthy will need to be defined. Several national
and international consortia have begun this process. En-
cyclopedia of DNA Elements (ENCODE), the Interna-
tional HapMap Project, the 1000 Genomes Project, and
the NIH Roadmap Epigenomics Mapping Consortium
have been established to further the understanding of epi-
genetic features and decipher how they interact with
genomic sequence to contribute to human health and dis-
ease (53). In particular, the NIH Roadmap Epigenomics
Project has established several initiatives that will provide
a public resource for epigenomic maps of normal human
stem cells and primary tissues in addition to supporting
technology development and funding research in epi-
genetic changes associated with specific disease
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(www.roadmapepigenomics.org). The creation of these
groups represent a significant investment of resources and
may provide the critical mass of epigenomic investigators
needed to move the field forward.

-Omics-based research is frequently criticized for pro-
ducing large amounts of uninterpretable data. The future
of research involving obesity, diabetes, and gene-environ-
ment interaction will undoubtedly involve systems biol-
ogy approaches. Systems biology is the comprehensive,
quantitative analysis that integrates the manner in which
all of the components of a biological system interact over
time (54). A systems approach usually incorporates -om-
ics-based assays with iterative measures and may include
layering of multiple global sets of biological data. The
large datasets generated are then used to construct new
predictive models, which can be refined until they will
allow for the prediction of the behavior of the system given
any perturbation (55). Such models would enable a re-
searcher or clinician to predict disease susceptibility or
response to treatment or provide prognosis in a specific
individual.

Conclusion

In conclusion, the environment has great biological impact
on human health and disease, particularly in common
complex disorders, like obesity and diabetes. Direct evi-
dence linking specific environmental exposures and met-
abolic disease in humans is limited. Progress in this area
has been hampered by the availability of rudimentary
tools for exposure assessment. The challenge arises from
the need to integrate the impact of fluidly changing envi-
ronmental influences over time, which govern within the
context of potential responses that are determined by the
individual genotype. At the interface of gene-environment
interactions lies the epigenome, which may provide an
accessible recording of the exposome and provide insight
into the origins of specific disease. Use of technologies that
create complete biological datasets and the development
of systems approaches to interpretation of complex iter-
ations offer the hope for significant, paradigm changing
discoveries in our understanding of common human
disease.
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