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SUMMARY

Using a functional approach to investigate the epige-
netics of type 2 diabetes (T2D), we combine three
lines of evidence—diet-induced epigenetic dysregu-
lation in mouse, epigenetic conservation in humans,
and T2D clinical risk evidence—to identify genes
implicated in T2D pathogenesis through epigenetic
mechanisms related to obesity. Beginning with
dietary manipulation of genetically homogeneous
mice, we identify differentially DNA-methylated
genomic regions. We then replicate these results in
adipose samples from lean and obese patients pre-
and post-Roux-en-Y gastric bypass, identifying
regions where both the location and direction of
methylation change are conserved. These regions
overlap with 27 genetic T2D risk loci, only one of
which was deemed significant by GWAS alone.
Functional analysis of genes associated with these
regions revealed four genes with roles in insulin
resistance, demonstrating the potential general util-
ity of this approach for complementing conventional
human genetic studies by integrating cross-species
epigenomics and clinical genetic risk.

INTRODUCTION

Type 2 diabetes mellitus (T2D) is a metabolic disorder with a

rapidly increasing worldwide prevalence. T2D affects 300 million
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adults worldwide, and that number is predicted to rise to above

430 million by 2030 (Chen et al., 2012). Although T2D has a sig-

nificant genetic risk component, as determined by genome-wide

association studies (McCarthy, 2010), the heritability estimate is

only 21% when looking across all age groups (Almgren et al.,

2011). These low heritability estimates, coupled with the rapid

increase in worldwide prevalence, suggests a strong role for

environmental risk factors. As an example, recent work on the

efficacy of Roux-en-Y gastric bypass (RYGB) as a treatment

for obesity has found that this procedure can have a profound

positive effect on T2D-related metabolic indicators (Mingrone

et al., 2012).

Epigenetics, the study of non-DNA sequence-based infor-

mation that is replicated during cell division, such as

DNA methylation, has been suggested as a natural integrator

of genetic susceptibility and environmental exposure in

common disease (Bjornsson et al., 2004). Epigenetics has

also attracted considerable scientific and lay attention due to

its dynamic nature, association with common disease (Cui

et al., 2003), and reversibility under targeted therapies (Sharma

et al., 2010).

Most common human diseases are explained to a very limited

degree by known individual common genetic variants, with

�3.4% of risk profile score explained for psychiatric disorders

like schizophrenia (Schizophrenia Working Group of the Psychi-

atric Genomics Consortium, 2014) and �10.7% for T2D (Global

Lipids Genetics Consortium et al., 2013). This combination of

limited genetic causality, environmental influence, and persis-

tence over long time periods suggests a likely role for epige-

netics in common human disease. However, epigenetic studies

have their own limitations, including the need in most cases to

use cells appropriate to the disease under study, confounding
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Table 1. Genome-wide Significant Mouse DMRs

Tissue Analysis q val < 0.05 q val < 0.1

Adipocytes Diet 232 448

Weight 183 288

Fasting glucose 235 571

GTT 0 3

ITT 294 419

q values generated based upon comparison of observed DMR areas

to areas generated by 1,000 random permutations of phenotype/

methylation associations. See also Table S1 for a full list of all

mouse DMRs.
effects such as age, and the often considerable difficulty in

designing replication sets, which are much easier in purely ge-

netic studies because of the universality of the sample type

(DNA from blood). A number of methodologies have been devel-

oped by our group and others to adjust for cell-type composition,

confounding variables, and replication studies (which are typi-

cally much smaller) (Houseman et al., 2012; Liu et al., 2013;

Montaño et al., 2013).

There have been limited epigenetic analyses of T2D and asso-

ciated metabolic traits thus far. Studies of pancreatic islets have

found methylation differences between T2D patients and nondi-

abetic controls (Dayeh et al., 2014). Similar changes have also

been found in peripheral blood leukocytes from obese humans

early after RYGB (Kirchner et al., 2014). Two studies examining

DNA methylation related to exercise and T2D status found

epigenetic changes overlapping the TCF7L2 locus (Rönn et al.,

2013; Toperoff et al., 2012). Finally, one study that examined

methylation in skeletal muscle from obese and lean subjects at

14 individually selected loci found that methylation in obese sub-

jects reverted to leanmethylation levels after RYGB (Barres et al.,

2013).

Here, we established an approach utilizing two species to

identify candidate genes involved in obesity and T2D through

epigenetic mechanisms. We first examined the epigenetic

consequences of a high-fat diet in a carefully controlled exper-

imental mouse obesity setting. We then replicated across

species—in humans—by analyzing adipose tissue from a cohort

that both reproduces and reverses a phenotype similar to the

obese mouse. The use of samples from the same subjects

pre- and post-RYGB allows a human isogenic comparison of

the effect of obesity-induced metabolic disturbances. This

cross-species approach exploits the power of evolutionary

selection, whose mechanisms have survived the 50 million

year separation between mouse and human, in a more compre-

hensive manner than simple replication from human set to

human set, and may better identify functionally important envi-

ronmental targets. We lastly stratified these cross-species

obesity-associated regions using genetic association data

from a large genome-wide association study (GWAS) for T2D

to more directly link our obesity-derived phenotypes with human

T2D. As a result of this approach, we are able to identify four

genes with roles in insulin resistance, suggesting that this

cross-species approach provides a powerful experimental sys-

tem for identifying the genomic variation associated with com-

mon disease.
Cell
RESULTS

Alterations in DNA Methylation in Mouse Adipocytes
Produced by High-Fat Diet
To detect DNA methylation differences, we used the compre-

hensive high-throughput array-based relative methylation

(CHARM) method, which in its current form can assay over

5 million CpG sites in mouse and 7.5 million CpG sites in human.

In 12 adipocyte samples extracted from mouse adipose tissue,

we found 232 differentially methylated regions (DMRs) corre-

lated with diet status (Table 1). As an example, when comparing

adipocytes from high-fat-fed mice versus low-fat-fed mice, we

found hypermethylation overlying the promoter of phosphoenol-

pyruvate carboxykinase 1 (Pck1, Figure 1A). PEPCK, the product

of Pck1, catalyzes a rate-limiting step in gluconeogenesis, is

essential for lipid metabolism in adipose tissue, is known to be

regulated by insulin, and has been linked to lipodystrophy and

obesity in mice (Beale et al., 2004).

In addition to the high-fat versus low-fat analysis, even more

DMRs were detected when analyzing methylation differences

related to the metabolic phenotypes of body weight, fasting

glucose, and insulin and glucose tolerance test area-under-

curve (ITT/GTT AUC) values (Table 1 and Table S1). One example

of a mouse GTT-associated DMR is in the Fasn gene, which pro-

duces fatty acid synthase. Most DMRs found were significantly

associated with more than one trait, which is not entirely unex-

pected as the phenotypes themselves are highly correlated

(Figure S1).

We additionally examinedDNAmethylation in pancreatic islets

purified from whole mouse pancreata and hepatocytes ex-

tracted frommouse liver tissue.We found significant correlations

between methylation and mouse diet and weight in pancreatic

islets and correlations between methylation and weight and ITT

in hepatocytes (Table S1).

Pooling tissues together and surveying for DNA methylation

changes in common across tissues yielded no significant

results.

Gene Ontology for Mouse DMRs
We implemented gene set analyses to assess the overall biolog-

ical importance of the DNA methylation changes we observed in

mouse adipocytes. The genome-wide significant adipocyte

DMRs were near genes that were significantly overrepresented

in lipid metabolic and immune/inflammatory pathways com-

pared to the background list of genes represented on our array,

with enrichment q values < 9.7 3 10�3 (Table S2). Examining

hyper- and hypomethylated DMRs separately in high-fat-fed

obese mice, we observed that the metabolic pathway enrich-

ment was derived from genes near hypermethylated DMRs,

while the inflammatory pathway enrichment was present mainly

in genes near hypomethylated DMRs.

Inflammatory and immune-related systems are known to be

upregulated in adipocytes specifically in both obesity and

T2D (Hotamisligil, 2010). Similarly, recent work has shown adi-

pose de novo lipogenesis downregulation associated with

metabolic dysfunction (Roberts et al., 2009). These pathways,

however, have not previously been shown to be significantly

associated with methylation changes in a diet-induced obesity

phenotype.
Metabolism 21, 138–149, January 6, 2015 ª2015 Elsevier Inc. 139
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Figure 1. Genome-wide Significant Methylation Changes Related to Diet-Induced Obesity in C57BL/6 Mice

(A) Two genome-wide significant DMRs are hypermethylated in adipocytes purified from mice raised on a high-fat diet. Each point represents the methylation

level in adipocytes from an individual mouse at a specific probe, with smoothed lines representing group methylation averages. These points are colored blue for

lean mice and red for obese mice.

(B) Bodyweight (grams) and glucose tolerance (AUC) are associatedwithmethylation in adipocytes at genome-wide significant levels. Each point in the top panels

represents oneprobe,with the y axis representing thePearsoncorrelation coefficients of the probeswith theanalyzedphenotype.Dotted lines represent the extent

of the DMR as generated automatically via CHARM. The bottom panels display gene location information for the chromosomal coordinates on the x axis.
Methylation Replication in Mice and Associated Gene
Expression Studies
We then tested for replication of the methylation results at nine

DMRs in adipocytes and three DMRs in pancreatic islets in an in-

dependent set of 18 mice (Figure 2A and Table S3). The 625

genome-wide significant adipocyte DMRs have FDR q values

ranging from 0.004 to 0.05. In order to determine whether our re-

sults would replicate throughout this range, we examined a sub-

set of DMRs with levels of statistical significance that spanned

from the most significant to just below the 0.05 cutoff. Mice

used in the replication set were also reared on a high-fat diet

but were separate from those used for CHARM. Nine mouse

adipocyte DMRs were assayed by bisulfite pyrosequencing.

Eight of these regions had at least one CpG showing significant

differential methylation in the same direction as detected by

CHARM.

Although these were fractionated cells under investigation, to

further ensure that the results were not due to cell-type shifts in
140 Cell Metabolism 21, 138–149, January 6, 2015 ª2015 Elsevier In
the high-fat-fed obese mice resulting from the infiltration of im-

mune cells into adipose tissue, we used quantitative PCR

(qPCR) to characterize the expression of multiple macrophage-

and adipocyte-specific markers in our purified adipocyte

samples from low-fat-fed and high-fat-fed mice. We saw no sig-

nificant change in the levels of expression of the macrophage

(inflammatory) markers F4/80, Cd14, or Cd68, and we did see

the expected obesity-related within-adipocyte changes of the

adipocyte markers AdipoQ and Ccl2 (Table S4).

To examine whether these methylation changes between

high-fat- and low-fat-fed mice involved changes in the expres-

sion of nearby genes, we used quantitative PCR to examine

the expression of 13 genes near genome-wide significant

DMRs (Figure 2B). We used qPCR to examine mRNA from the

same adipocytes and mice that were analyzed by CHARM. Of

the 13 genes examined, 9 showed significant changes in

mRNA expression in the opposite direction as methylation

changes (Figure 2B).
c.
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Figure 2. Replication of Mouse Methylation Changes in Additional Mice and Associated Gene Expression Changes

(A)Methylation changes observed after CHARManalysis at two genome-wide significant DMRs are replicated using bisulfite pyrosequencing. Red boxes indicate

CpGs assayed in pyrosequencing. For the lower pyrosequencing plots, the y axis representsmethylation, and individual CpGs are plotted along the x axis. Purple

dots represent control DNA artificially methylated to have 0%, 25%, 50%, 75%, and 100% methylation.

(B) Gene expression changes for genes near genome-wide significant mouse adipocyte DMRs. RNA levels were normalized to same-sample 18S RNA mea-

surements and are displayed as (CT [high-fat samples] � CT [low-fat samples])2. Error bars represent standard error of the CT differences between groups.

*p < 0.05, **p < 0.005. The direction of the genome-wide significant CHARM DMR closest to the gene is denoted below the gene names; + and � represent

regions hyper- or hypomethylated in the high-fat samples, respectively. See also Figure S2 for whole-genome gene expression correlations and Table S4 and

Table S5 for pyrosequencing and tissue purification, respectively.
Furthermore, we assessed whether these DNA methylation

changes correlated with previously published genome-wide

gene expression data in a similar cohort (Xu et al., 2003). We
Cell
saw significant inverse correlations between diet-relatedmethyl-

ation changes and diet-related gene expression changes (Fig-

ures S2A and S2B). These results compare favorably to other
Metabolism 21, 138–149, January 6, 2015 ª2015 Elsevier Inc. 141



functional analyses of discovered DMRs (Kim et al., 2010). Taken

together, these data show that we find robustly significant DMRs

in mice that correlate with metabolic traits, that these DMRs

replicate in separate animals, and that methylation at many of

these regions appears to have a functional effect on gene

expression.

Mouse DMRs Replicated Evolutionarily in Human
Adipose Tissue
We reasoned that many functionally relevant DMRs in mice

exposed to a high-fat diet serve an important metabolic function

that would be conserved across species and often susceptible

to similar environmental cues. Therefore, to determine whether

the methylation changes observed in mouse adipocytes could

be replicated in an evolutionarily divergent cohort, we performed

CHARM analysis on human subcutaneous adipose tissues from

7 lean subjects and 14 obese, sex-matched, insulin-resistant

subjects of the same age range, as well as 8 obese subjects

post-RYGB.

We first examined the replication of mouse adipocyte DMRs in

human adipose tissue from obese versus lean. We observed

very strong overlap between DMRs in human obese versus

lean tissue and DMRs in high-fat-fed versus low-fat-fed mouse

adipocytes (all p < 10�15, Figure S3A, rightmost five bars),

showing that there is a strong correlation between areas that

are regulated by methylation in metabolic dysfunction in both

mice and humans.

Next, in order to determine which mouse methylation changes

would replicate in human, we determined that out of a total of

625 genome-wide significant mouse adipocyte DMRs, 576 had

homologous regions on the human genome (hg19), calculated

via the liftOver UCSC tool (Hinrichs et al., 2006), and 497 had hu-

man CHARM probes within 5 kb. This is a remarkably high frac-

tion (86.3%), suggesting that our assay method, CHARM, is

highly comprehensive, and also that the location of CpG regions

is strongly conserved in evolution. Of the 497 conserved DMRs,

249 (50.3%) showed significant differential methylation (p < 0.05)

between obese and lean people (Table S5). These numbers were

similar when analyzing differential methylation before and after

RYGB surgery (227 out of 497). As a final restrictive step in using

humanmethylation to validate ourmouse results, we determined

that 170 (68%) of these regions had a consistent direction of

methylation change between high-fat-fed obesemice and obese

humans, such that if a particular region had higher methylation in

high-fat-fed mice, that region would also have higher methyl-

ation in obese humans and vice versa.

When more restrictive human methylation significance cutoffs

are used, the percentage of regions with consistent directionality

(true positive rate) rises, but the total number of retained regions

drops, with 67/77 (87%) directionally consistent at human

obesity p values < 0.005, and 25/25 (100%) consistent at

p values < 0.0005 (Figure S3B). All 170 directionally conserved

regions were associated with the metabolic phenotypes of fast-

ing glucose, GTT, and/or ITT in addition to mouse diet status.

Furthermore, 134 of these regions had consistent directions of

methylation change between both lean-obese and pre-/post-

RYGB samples (e.g., higher in obesity and presurgery and vice

versa), and a further 105 had postsurgery methylation values

that were in between lean and presurgery methylation values,
142 Cell Metabolism 21, 138–149, January 6, 2015 ª2015 Elsevier In
i.e., regions where methylation in obese subjects appeared

to revert toward a lean phenotype after surgery (enrichment

p = 2.8 3 10�3).

In Figure 3, we present two regions that have significant

methylation changes in human adipose tissue, are in homolo-

gous regions of the genome as mouse DMRs, are directionally

consistent with the mouse DMRs, and have human postsurgery

methylation levels that havemoved closer to the lean phenotype.

These regions are over two genes: ADRBK1 (adrenergic, beta,

receptor kinase 1, Figure 3A) and KCNA3 (potassium voltage-

gated channel, shaker-related subfamily, member 3, Figure 3B).

We also assessed whether the human adipose DNA methyl-

ation changes correlated with previously published human

genome-wide gene expression data from obese and lean indi-

viduals (Arner et al., 2012). As with our mouse data, we saw a

highly significant inverse correlation between obesity-related

methylation changes and obesity-related gene expression

changes (Figures S2A and S2B, right panels).

We performed a similar mouse-human comparison in pancre-

atic islets using published DNAmdata from T2D and control sub-

jects (Dayeh et al., 2014), showing that 67% (odds ratio = 7.2,

p = 7.2 3 10�6) of the mouse pancreatic islet DMRs that repli-

cated in the human data had methylation change in the same

direction and that these probes were far more associated with

human T2D status than the rest of the probes on the array

(p = 1.18 3 10�9, Figure S3C), demonstrating that our mouse-

derived islet DMRs are enriched for potential epigenetic alter-

ation in human T2D. Finally, we also validated multiple mouse

hepatocyte DMRs in human liver tissue, with 62.5% replicating

(Table S3).

Genetic Risk Loci Association with Overlapping Regions
of Human and Mouse Methylation Changes
We incorporated data from human GWAS for T2D using two

complementary approaches that allow further characterization

of our candidate obesity-related DMRs. GWAS summary statis-

tics were obtained from the DIAGRAM (Diabetes Genetics

Replication and Meta-Analysis) T2D genome-wide association

meta-analysis, comprising data from 12 separate GWAS studies

totaling 12,171 T2D cases and 56,682 controls (http://www.

diagram-consortium.org). We first directly explored the associa-

tion between genes with obesity-related DMRs and genes

conferring clinical genetic risk for T2D by calculating statistical

enrichment of the GWAS regions overlapping our DMRs. We

found marginally significant enrichment for adipose DMRs

among at least marginally significant GWAS signals (GWAS

p value cutoffs starting with p < 10�6, corresponding to enrich-

ment p values ranging from 0.0048 to 0.0165, Table S6). Given

the small number of directly overlapping regions, these results

are likely strongly influenced by the strength of the TCF7L2

signal. While much of the early literature on TCF7L2 focused

on its role in pancreatic islets, there is growing evidence that ex-

trapancreatic effects may contribute to the T2D phenotype at

this locus (Nilsson et al., 2014).

We further examined statistical enrichment in the context of

regulatory networks involving genes implicated in GWAS. Genes

at 23 genome-wide significant GWAS signals (usually the gene

nearest to the lead SNP) were directly (one-step) connected to

genes near DMRs either by transcriptional control or direct
c.
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Figure 3. Overlapping Methylation Changes in Human and Mouse Adipose Tissue

(A and B) Two genome-wide significant DMRs found in mouse adipocytes (top panels) over Adrbk1 (A) and Kcna3 (B) are shown along with the corresponding

methylation changes in human adipose tissue (bottom panels). For the panels denotingmethylation, each point represents themethylation level from an individual

mouse or human at a specific genomic location, with smoothed lines representing group methylation averages. y axis, methylation values. Below each

methylation plot is a panel showing genomic coordinates for the respective species and any genes at those coordinates. See also Figure S3 for tissue and species

overlaps and Table S6 and Table S7 for conserved adipose mouse DMRs in human and for enrichment between DIAGRAM and conserved DMRs, respectively.
protein-protein interaction (Figure 4A). This amount of interaction

represents significantly more than expected by random chance

(p = 0.0206) (Figure S4) and demonstrates how genes implicated

by methylation appear to be acting in the same pathways as

genes implicated by GWAS. Similarly, expanding beyond one-

step connections, many of the 30 regions implicated by both

methylation data and GWAS are connected to genes identified

by the mouse-only and human-mouse analyses and act in the

same pathways (Figure 4B).

Given these results, we sought to further filter our obesity-

related DMRs down to the subset of genes likely associated

with T2D. We hypothesize that DMRs that overlap associated

marker SNPs for T2D can identify genes with epigenetic mecha-

nisms of risk in adipose tissue. Asmany of the DMRs overlapping

GWAS T2D loci with low p values implicate genes already known

to be involved in T2D, obesity, and related phenotypes, we there-

fore selected the subset of DMRs within genetic loci that had at

least marginal statistical association with T2D clinical risk.

This approach reduced the 170 regions of directionally consis-

tent and evolutionarily conserved methylation change in adipose

tissue using the SNP-level summary statistics of the DIAGRAM
Cell
analysis. In all, 30 cross-species and directionally conserved

adipose DMRs directly overlapped with 27 marker SNPs (or

close proxies with linkage disequilibrium > 0.8) that had some

evidence of association with T2D (at least p < 0.01, Table 2;

see Experimental Procedures). We also identified ten regions

where conserved pancreatic islet DMRs overlap with DIAGRAM

SNPs (Table S7).

In these final 30 regions, not only have we connected methyl-

ation change to obesity-induced metabolic phenotypes across

two species, but the association with T2D-associated SNPs

also provides a candidate mechanism for the methylation

changes observed in human obesity and RYGB surgery. These

27 identified SNPs could potentially explain up to 2.69% of ge-

netic T2D liability, though only one of these loci reached

genome-wide significance in DIAGRAM (Morris et al., 2012).

Even excluding this GWAS-positive loci (TCF7L2), which ex-

plains 1.12% of the variance alone, the remaining regions could

explain up to 1.57% of genetic variance in T2D susceptibility.

These data suggest that for at least some of these loci, genetic

variation underlies changes in methylation that are causal for

T2D risk. It is also possible that these regions are also
Metabolism 21, 138–149, January 6, 2015 ª2015 Elsevier Inc. 143
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Genes added for annotation clarity

Functionally validated genes
Cross-species DMRs with T2D gene
Genome-wide significant mouse DMRs

TMCC3

Figure 4. Diagrammatic Representation of the Interactions between Epigenetically Conserved andGenetically Associated Genes Implicated

in This Study

(A and B) Generated using QIAGEN’s Ingenuity IPA (Ingenuity Systems), these diagrams represent the connections between genes implicated in our analyses.

(A) Genes with genome-wide significant linkage to T2D in the DIAGRAM meta-analysis were connected to genes near directionally conserved cross-species

DMRs. Genes with no connections were dropped. (B) Starting with a set of 23 genes near T2D-associated directionally conserved cross-species DMRs, this

network was grown by adding genes near species-conserved and mouse-only genome-wide significant DMRs in order to represent one potential regulatory

network. Gene colors explained in within-figure legend. See also Figure S4 for the permutation analysis of the enrichment of interactions in (A).
susceptible to environmental factors that influence local methyl-

ation and that they therefore serve to integrate genetic and

epigenetic effects.

Note that this filtering-based approach is independent of

assessing the statistical enrichment of T2D GWAS signal, either

at SNP or gene level, within our cross-species obesity-associ-

ated DMRs, an approach commonly used with GWAS summary

statistic data. This approach therefore does not diminish the

potential function of genes with GWAS-positive statistical asso-

ciation for T2D or of our DMRs that do not overlap with GWAS-

associated SNPs, for contributing epigenetically to obesity.

We hypothesized that one mechanism by which DNA methyl-

ation and genetic variation contribute to T2D risk may involve

enhancer activity. Using publicly available human enhancer

maps in 86 independent cell and tissue types (Hnisz et al.,

2013), we found that a striking proportion of DMRs mapped to

adipose nuclei enhancers and superenhancers (which had the

largest degree of overlap across all cell types). While the back-

ground proportion of overlap for CHARMwas 17.2% for adipose

enhancers and 3.8% for super enhancers, 40.6% (69 overlaps,

p = 1.58 3 10�15) and 14.7% (25 overlaps, p = 5.72 3 10�13)

of the directionally consistent 170 regions and 53.3% (16 over-

laps, p = 5.65 3 10�7) and 20% (6 overlaps, p = 3.24 3 10�5)

of the further 30 GWAS-associated regions above lie in adipose

enhancers and super enhancers, respectively (Table S8). Thus, a

major mechanism for methylation-mediated metabolic dysfunc-
144 Cell Metabolism 21, 138–149, January 6, 2015 ª2015 Elsevier In
tion is likely through epigenetic modification of enhancers. Note

that most of these enhancers were not previously known to be

related to T2D through conventional GWAS or other methods.

Functional Analysis of Genes Implicated by Cross-
Species Methylation
In order to establish that our cross-species method can identify

functional genes implicated in obesity, insulin resistance, T2D,

and related research, we functionally assayed five genes. We

selected genes with no prior association with metabolic pheno-

types and that had methylation reversion after RYGB. As RYGB

is a targeted, environmental therapy that improves multiple dele-

terious phenotypes including insulin sensitivity, we hypothesized

that this subset of our results would be the most likely to have an

effect on T2D- and obesity-related phenotypes. We then exam-

ined the physiological effect of altering the expression of these

genes on adipocyte cell culture models using insulin-stimulated

glucose uptake assays. This procedure canmeasure the respon-

siveness of adipocytes to insulin, a phenotype disrupted in

obesity. We assayed seven 3T3-L1 adipocyte cell lines, each

stably expressing shRNAs or expression plasmids correspond-

ing to one of the five selected genes or a suitable control. In order

to mimic the effects of a high-fat diet, genes hypermethylated in

high-fat adipocytes were knocked down, and genes hypomethy-

lated were overexpressed. Significant changes in glucose up-

take were found for four of these five (Figure 5B). Potential roles
c.



Table 2. Mouse-Human DMRs with Genetic T2D Risk Loci

Association

Gene name

Relative location

of DMR

Distance

to TSS

RYGB

reversion

DIAGRAM

p value

Tcf7l2 inside intron 43,058 � 4.90E-68

Tcf7l2 Inside intron 77,345 � 4.90E-68

As3mt overlaps 50 0 + 9.60E-06

Etaa1 Inside intron 618 + 4.70E-05

Tnfsf8 overlaps 50 0 � 0.00029

Plekho1 overlaps exon 4,965 + 0.00045

Tnfaip8l2 inside intron 337 + 0.00045

Akt2 inside intron 20,427 � 0.00049

DIAGRAM GWAS 0.001 cutoff

Lhfpl2 Inside intron 2,490 + 0.001

Mkl1 overlaps 50 0 + 0.0014

BC048644

(Car5a)

overlaps exon 146 + 0.0015

Rgs3 downstream 10,8842 + 0.0019

Fgd3 Inside intron 11,100 + 0.002

Stau1 overlaps 50 0 + 0.0022

Tmcc3 Inside intron 43,772 + 0.0025

Tbx3 inside exon 12,714 - 0.0029

Gstz1 Inside intron 10,332 + 0.0029

Taok3 Inside intron 549 + 0.0036

Bnip3 Inside intron 1,863 � 0.0039

Dlst overlaps 50 0 + 0.0053

Kcna3 Close to 30 2,192 + 0.0064

Cln8 Inside intron 3,055 + 0.0065

Cd37 exon 2,687 + 0.0069

Nfib Inside intron 100,380 � 0.0071

Pck1 promoter 453 + 0.0072

Pck1 overlaps 50 0 + 0.0072

Pcx inside intron 59,049 + 0.0073

Hoxd3 inside intron 7,307 + 0.0084

Cd33 overlaps 50 0 + 0.0087

Evl exon 157 + 0.0099

Shown are the names of the nearest gene to the mouse and human dif-

ferential methylation, the position of the DMR relative to the gene, the dis-

tance to the transcriptional start site (TSS), whether the direction of

methylation change (sign of smoothed effect statistic) post-RYGB sur-

gery reverts toward lean subject methylation levels (RYGB reversion),

and the p value of the T2D genetic association in the region. See also

Table S7 for an analogous table with the pancreatic islet results instead

and Table S8 for conserved adipose DMRs that overlap with adipose

enhancers.
for all of these genes in modulating insulin sensitivity and resis-

tance are considered in the Discussion.

DISCUSSION

In mouse, we identified 625 genome-wide significant DMRs that

correlate with diet-induced obesity phenotypes in adipocytes.

Of these regions, 249 had significant conserved methylation

changes in human obesity, and 170 of these had the same direc-
Cell
tion of methylation change in both species. Thirty of these DMRs

also overlapped with SNPs or nearby proxies that have been

associated with human T2D genetic risk. These data show that

DNA methylation changes in metabolic disease are conserved

across species and that this conservation overlaps genomic re-

gions where genetic polymorphisms have been associated with

T2D. Our approach combines three lines of evidence—epige-

netic dysregulation following high-fat diet in mouse, epigenetic

directional consistency in humans, and some evidence for clin-

ical risk of T2D—to identify genes likely functionally implicated

in the pathogenesis of T2D specifically through epigeneticmech-

anisms related to obesity.

In the present study, while we use nominal p value significance

to identify human methylation and GWAS results, we first

perform a multiple comparison correction in our initial set of

mouse DMRs using a false discovery rate algorithm. As there

is a growing awareness that the cumulative effect of common

SNPs with low minor-allele frequency scores potentially explain

large amounts of phenotypic variability beyond that of genome-

wide significant SNPs identifiable by GWAS (Yang et al., 2010),

approaches like ours that can use alternative methods to identify

significant areas of potential genetic risk are necessary. The

unique SNPs in these regions potentially account for 2.76% of

T2D genetic variance, almost half of which is known by purely

genetic analysis and may be epigenetically mediated.

We observed significant changes associated with 4 out of

5 genes assayed by insulin-stimulated glucose uptake assay, a

common indicator of insulin resistance. Screens using this assay

and performed on sample sets not enriched for genes in gluco-

insulinemic pathways have found a far smaller percentage of

genes that will alter glucose uptake (�10%) (Tang et al., 2006),

indicating that our method can successfully select potential tar-

gets with a much higher than random probability of affecting in-

sulin sensitivity.

Three of the genes that we found had altered glucose uptake

fell into the classical inverse methylation-gene expression corre-

lation: Mkl1, Plekho1, and Tnfaip8l2 were all hypomethylated in

high-fat-fed mice and obese humans, had increased gene

expression in corresponding subjects, and, when these genes

were overexpressed in cell culture adipocytes, exhibited

decreased glucose uptake in response to insulin, which would

fit with the increased insulin resistance commonly observed in

obesity and diabetes. While none of these genes has previously

published roles in insulin resistance, several have suggestive

links to metabolic phenotypes. Mkl1 is known to be a transcrip-

tional coactivator of serum response factor (SRF), which been

associated with insulin resistance in skeletal muscle (Jin et al.,

2011). Similarly, PLEKHO1 has recently been shown to inhibit

AKT/PI3K signaling (Zhang et al., 2014), a pathway known to

be involved in insulin signaling. With regards to the direction of

glucose uptake change, we note that insulin signaling induces

both positive and negative feedback within affected cells (Gual

et al., 2005), and without a methylation-gene expression candi-

date mechanism it is not possible to determine which feedback

loop the methylation changes are involved with.

It is worth noting that as these genes did not contain common

variants that passed the genome-wide significant GWAS

threshold, they would not have been identified by GWAS alone.

Similarly, only 4 out of these 5 genes had significant gene
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Figure 5. Overexpression and shRNA-

Mediated Knockdown of Selected Genes in

3T3-L1 Adipocytes

(A and B) Selected genes from the set of 30 spe-

cies conserved and T2D-SNP overlapping adi-

pose DMRs were either stably overexpressed (A)

or knocked down with shRNA (B). Glucose uptake

is plotted as fold difference from normal, error bars

represent standard error, and significance was

determined by two-way ANOVA modified by

Bonferroni correction denoted as follows: * p <

0.05, ** p < 0.01, *** p < 0.001.

(C) DNA methylation and gene expression levels

for high-fat-fed mice and obese human versus

low-fat-fed mice and lean humans (e.g., ‘‘Y’’ in-

dicates hypomethylation/lower gene expression in

high-fat-fed and obese compared to low-fat-

fed and lean). Bold arrows indicate significant

changes.
expression changes. This functional assay illustrates how our

method of combining cross-species methylation data with

GWAS results for common SNPs can implicate genes that would

not have been detected otherwise.

Recent work in our laboratory has identified regions of the

genome where DNAmethylation acts to mediate a genetic effect

on rheumatoid arthritis (Liu et al., 2013), and the methylation

changes in obese humans could potentially act in an analogous

role. Our results in obese and insulin-resistant mouse models,

however, identify methylation differences even between inbred

mice and thus are definitively the result of environmental stimuli

rather than a genetic underpinning. The fact that we see many of

these same methylation changes in obese humans, and that

these changes are located over regions with known genetic links

to T2D, implies that DNA methylation levels could be integrating

and mediating genetic and environmental causes of metabolic

disease at specific genomic loci.

It is encouraging that many of the genes described here show

pathway relationships to known genetic associations (Figure 4).

For example,PRC1, a regulator of cytokinesis, is associatedwith

T2D by a genome-wide significant DIAGRAM result, but it has no

known connection to any other gene implicated by genome-wide

significant DIAGRAM loci. Its transcription, however, is regulated

by FOXO1, an important transcription factor in gluconeogenesis,

insulin signaling, and adipocyte differentiation that we find to be

differentially methylated in both mouse and human obesity.

FOXO1 is in turn regulated by TCF7L2, one of the strongest

GWAS results. Furthermore, combining genes from all levels of

this study creates potential regulatory networks that include

genes with known involvement in T2D, but also incorporate

closely connected genes with no previously known obesity or

T2D association that are shown to be involved with obesity

and insulin resistance in this story (Figure 4B). Some of these

genes, such as FASN and APP, appear to be loci in this network

and could represent potentially important targets.

There are many approaches for and important applications of

interrogating the association of functional and genetic elements
146 Cell Metabolism 21, 138–149, January 6, 2015 ª2015 Elsevier In
using GWAS summary statistics (ENCODE Project Consortium,

2012; Jostins et al., 2012; Nicolae et al., 2010), but our approach

is unique in its leverage of carefully controlled biological systems

to directly integrate cross-species functional epigenomics and

clinical genetic risk by stratification. This work, of course, does

not address or diminish the many GWAS associations that are

not associated with methylation changes. Additionally, it is

important to note that while we do not directly address the issue

of methylation causality in this study, causality is, at the least,

multi-tiered. Our functional data certainly indicate that these

epigenetic changes are functionally proximate to T2D-relevant

phenotypes and therefore important for discovery and for clinical

translation. Current systems biology literature challenges con-

ventional notions of causality as there is both positive and nega-

tive feedback in most complex living systems (Noble, 2012).

The approach described in this studymay have broad applica-

bility to identify candidate genes that may better dissect mecha-

nisms and potential routes of treatment in common human

disorders, such as cancer and cardiovascular disease. The

accessibility of a limited cohort of relevant patients with well-

characterized clinical materials before and after disease expo-

sure is plausible for cross-species replication. This type of

analysis can generate a reliable, functional candidate disease

gene set that can be used to interrogate SNP data sets and

lend additional support to specific targets that would not ordi-

narily pass the genome-wide correction threshold. The end

result is a process that can integrate information from multiple

complementary sources to identify potential targets essential

for the pathogenesis of common diseases, such as obesity or

T2D, that do not involve highly penetrant single genes, but rather

arise from multiple defects along pathways that integrate ge-

netic, epigenetic, and environmental cues.
EXPERIMENTAL PROCEDURES

For full details of all methods (and primer sequences), please see Supple-

mental Experimental Procedures.
c.



Mouse Sample Preparation

All animal protocols were approved by the Institutional Animal Care and Use

Committee of The Johns Hopkins University School of Medicine. Male

C57BL/6 mice were purchased from Charles River. Mice were fed a high-fat

diet ormatched control low-fat diet. Diet was provided for a period of 12weeks,

beginning at 4 weeks of age. At termination of the study, animals were fasted

overnight and euthanized, and tissues were collected.

Intraperitoneal Glucose and Insulin Tolerance Tests

Cohorts of mice (between 20 and 24 weeks of age) were injected with glucose

or insulin. Animals were fasted overnight (16 hr) prior to the glucose tolerance

test. For the insulin tolerance test, food was removed 2 hr prior to insulin injec-

tion. Serum samples were collected and glucose concentrations determined

at six time points after injections.

Mouse Hepatocyte Isolation

A protocol for primary hepatocyte isolation was performed using Collagenase

(BD Biosciences) and gradient centrifugation as adapted from previously pub-

lished methods (Berry and Friend, 1969; Li et al., 2010).

Mouse Primary Adipocyte Isolation

Mature adipocytes were isolated from mouse fat pads using Collagenase

(Sigma) and resuspension washes as previously described (Stahl et al., 2002).

Pancreatic Islet Isolation

Pancreatic islets used for CHARMwere isolated as previously described (Hus-

sain et al., 2000). For the pancreatic islets used in the replication set, whole

pancreases were obtained from high-fat-fed and low-fat-fed mice, stained

for insulin, and cryosectioned into 8 mm sections, and then laser-capture

microdissection was used to isolate pancreatic islets.

3T3-L1 Transduction and Transfection

3T3-L1 cells were transducted with Sigma Mission lentiviral particles (Sigma)

and transfected with overexpression plasmids using Lipofectamine 3000

(Life Technologies) as per the respective manufacturers’ protocols.

Cell Culture and Glucose Uptake Assay

3T3-L1 cell lines (ATCC) were maintained and differentiated as per manufac-

turer’s protocol, and glucose uptake assays were performed on differentiated

knockdown and overexpression lines.

Clinical Cohort

This study was approved by the Regional Ethics Committee of Stockholm.

All participants provided informed oral and written consent. Clinical

characteristics are shown for the obese men before and after RYGB

surgery (n = 14, 8, respectively) and nonobese (normal weight) men with a

similar age range (n = 7). Full information for human subjects can be found in

Table S9.

Human Sample Surgery and Subcutaneous Adipose Tissue Biopsies

A standard laparoscopic RYGB with a 1 m Roux limb was performed. Subcu-

taneous abdominal adipose biopsies (50–100 mg) were obtained from the

obese and nonobese (normal weight) subjects. Biopsies were obtained at

the beginning of RYGB surgery (obese subjects) or elective laparoscopic cho-

lecystectomy (lean subjects). Biopsies taken from the obese subjects 6months

after RYGB surgery were obtained after an overnight 12 hr fast from the same

surgical incision as the initial biopsy.

CHARM DNA Methylation Analysis

Genomic DNA from all samples was purified with the MasterPure DNA purifi-

cation kit (Epicenter) following the manufacturer’s protocol. Genomic DNA

was fractionated, digested with McrBC, gel-purified, labeled, and hybridized

to a CHARM microarray as described (Ladd-Acosta et al., 2010). The array

design specifications are freely available on our website (http://rafalab.dfci.

harvard.edu/). Subsequent technical preprocessing, normalization, and

correction for batch effects were performed as previously described (Jaffe

et al., 2012).
Cell
Bisulfite Pyrosequencing

Genomic DNA from each replication sample was bisulfite treated and PCR

amplified using nested primers. DNA methylation was subsequently deter-

mined by pyrosequencing with a PSQ HS96 (Biotage) as previously reported

(Migheli et al., 2013). Artificially methylated control standards of 0%, 25%,

50%, 75%, and 100% methylated samples were created using mixtures of

purified and SssI-treated whole-genome amplified genomic DNA.

Quantitative PCR Analysis

Validated primers for all genes were taken from PrimerBank (Wang and Seed,

2003) and synthesized by Integrated DNA Technologies. RNA was extracted

with TRIzol reagent (Life Technologies), cDNA was created with Quantitect

Reverse Transcriptase Kit (QIAGEN), and qPCR was performed with Fast

SYBR Green (Applied Biosystems) on a 7900HT Fast Real-Time PCR system

(Applied Biosystems). RNA levels were normalized to same-sample 18S

RNA levels.

GO Annotation

We analyzed GO annotation using the GOrilla tool (Eden et al., 2009). Enrich-

ment was calculated by comparing genes identified from our analysis to a

background of all genes detectable on the appropriate array.

Whole-Genome Gene Expression Analysis

Whole-genome gene expression data for mouse and human analogs of our

study were downloaded from GEO (Barrett et al., 2013). The mouse data

were already preprocessed, and the human data were preprocessed using

robust multiarray averaging (RMA) from the Affy R library (Bioconductor).

The gene expression data were then matched against the DMRs closest to

corresponding genes, the log fold change (logFC) of the gene expression

was plotted against the average value of the smoothed effect estimate within

the DMR, and p values were generated using t tests based on Pearson’s cor-

relation coefficient.

Enrichment between Human and Mouse DMRs

The liftOver tool from the UCSC genome browser transformed the coordinates

from the human DMRs from the hg19 human genome to the mm9 mouse

genome, as implemented in the rtracklayer Bioconductor package (Lawrence

et al., 2009). For each pair of DMR lists, one from the two lifted-over human

DMRs and another from the 25 mouse trait DMRs (Table S1), we calculated

the number of DMRs given within specific p value significance levels, and

also the number that overlapped within 5 kb across species. Enrichment tests

were chi-square tests based on the number of species-overlapping significant

DMRs, then DMRs only significant within each species, and finally the number

of lifted probe groups that were not significant in either species.

Cross-Species Statistical Analysis

We combined significant adipocyte mouse DMRs (at FDR < 5%) across the

five traits (glucose, GTT, ITT, weight, and diet) by retaining the maximal coor-

dinates over overlapping cross-trait DMRs, resulting in 625 independent

DMRs associated with at least 1 trait in adipocytes in mouse. These regions

were lifted over from the mouse mm9 genome build to the human hg19

genome build as implemented in the rtracklayer Bioconductor package (Law-

rence et al., 2009). These DMRswere annotated to the nearest humanCHARM

probe group based on the annotation within 5 kb. We then computed a differ-

ence and corresponding p values in obese versus lean and then in obese hu-

mans pre- versus post-RYGB surgery using linear regression and retained the

minimump value, number of probes with p < 0.05, and the slope at the smallest

p value within each of the mapped DMRs.

DIAGRAM GWAS Analysis

We integrated GWAS results into the mouse-human DMRs by obtaining

publicly available results from the DIAGRAM meta-analysis (http://

diagram-consortium.org/downloads.html; Stage 1 GWAS: Summary Statis-

tics download).

We estimated the variance in disease susceptibility based on the algorithms

provided in the Methods section of Morris et al. (Morris et al., 2012) and from

Wray et al. (Wray et al., 2010) using 1000 Genomes-derived risk allele
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frequencies and assuming a disease prevalence of 8% for a given collection of

risk SNPs.

We assessed potential enrichment between the DMRs and the GWAS re-

sults using two complementary approaches. The first assessed the enrich-

ment in genome location between DMRs and the LD blocks from the GWAS

(Collado-Torres and Jaffe, 2014), and the second assessed enrichment in

gene symbols based on all genes directly connected (one-step) to genes

linked to T2D with genome-wide significance by the DIAGRAM meta-analysis

based on regulatory networks generated using QIAGEN’s Ingenuity IPA

(Ingenuity Systems).
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