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Understanding the neurobiology of social behaviour in

mammals has been considerably advanced by the findings

from two species of vole, one of which is monogamous and

pair bonds whereas the other species is promiscuous and

fails to form any long-lasting social relationships. The

combination of neurobehavioural studies and molecular

genetics has determined behavioural differences between the

two species linked to the neural distribution of vasopressin

1A receptor in the male brain. More importantly, vasopressin

1A receptor gene transfer including the upstream regulatory

sequence has enhanced male social affiliation in a

non-monogamous species. Male affiliative bonding depends

upon release of both vasopressin and dopamine in the

ventral striatum enhancing the reward value of odour cues

that signal identity.
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Introduction
The nine amino-acid peptide family (nonapeptides) have

a long history of regulating social behaviour [1], with

structurally similar peptides having evolutionary con-

served functions in both invertebrates and vertebrates.

Annetocin and conopressin, both of which are ancestral

nonapeptides, are known to regulate reproductive behav-

iour in annelids and snails, respectively [2,3]. Whereas
ncedirect.com
these invertebrates have a single oxytocin-vasopressin

complex (OT–AVP), a gene duplication early in evolution

appears to have given rise to two separate peptide

lineages in vertebrates. In non-mammalian vertebrates,

vasotocin (AVT) shares similar roles with mammalian

AVP, whereas mesotocin and teleost isotocin (IT) are

functionally similar to mammalian OT. Interestingly, the

neuronal expression and gene regulation of these peptide

hormones appear to be conserved across vertebrates.

Indeed, pufferfish AVT and IT genes that are inserted

into the mouse genome are selectively expressed in the

hypothalamic vasopressinergic and oxytocinergic neu-

rons, respectively [4�]. The behavioural functions of these

neuropeptides are also conserved, with AVT and AVP

particularly influencing male courtship, affiliation and

aggression in a wide range of taxa [5–9]. The regulation

of male social behaviour by AVT and AVP is conferred by

its higher expression in males and the presence of steroid-

sensitive brain sexual dimorphisms in AVT and AVP

neurons [10]. Female social behaviour in non-mammalian

vertebrates is also associated with nonapeptides from the

AVT lineage [11], but in mammals with extended social

care directed towards kin OT takes a more dominant role

in social interactions [12]. Here, we review recent findings

on the neuropeptidergic regulation of monogamous bond-

ing in prairie voles and examine how conserved mechan-

isms also underpin mate recognition and mother–infant

recognition in promiscuous species. Common to making

these recognition cues ‘special’ is the brain’s reward

mechanisms centred around the ventral striatum.

What is special about mammalian social
behaviour?
In mammals, the social behaviour of males and females

reflects their different reproductive strategies. Reproduc-

tive success in males is determined through competition

with other males to mate with as many females as pos-

sible. Hence, males rarely form strong social relationships

and male coalitions are typically hierarchical with empha-

sis upon aggressive rather than affiliative behaviour.

Females have a different strategy. They invest in the

production of relatively few offspring with reproductive

success being determined by the quality of care and the

ability to enable infant survival beyond the weaning age.

Females, therefore, form strong social bonds with their

infants and their female–female relationships are affilia-

tive, especially among matrilineal kin who often assist

with infant care. In a minority of mammalian populations

(less than 5%) a promiscuous male strategy is not an

option owing to the low population density of females.

In this situation males form a partner preference (bond)
Current Opinion in Neurobiology 2004, 14:777–783
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with females, defend them against intruders and partici-

pate in parental care [13].

These gender specific aspects of mammalian social beha-

viour are underpinned by the neuropeptides OT and

AVP. In females, the hormones of pregnancy (progester-

one followed by oestrogen) prime the brain for synthesis

of OT and its receptors. OT release at parturition co-

ordinates maternal behaviour and physiology (i.e. uterine

contractions, pain suppression at the spinal level and milk

letdown) to ensure successful maternal care [14,15]. An

important component of maternal care is the need to

recognize offspring, which in most mammals involves

olfaction. The hormones of pregnancy induce the synth-

esis of OT receptors in the central olfactory projections

(olfactory bulb, medial amygdala and medial preoptic area

[MPOA]) [16], as well as OT and dopamine (DA) recep-

tors in the nucleus accumbens (NAcc) [17��], which is an

area of the brain concerned with social reward. Together

these systems synchronise the process of olfactory recog-

nition of pups with maternal motivation, ensuring the
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transition from pup avoidance to pro-active retrieval in

the context of maternal behaviour.

OT and AVP are also crucial for the regulation of other

aspects of mammalian social behaviour. Intra-cerebral

administration of AVP has demonstrated its importance

for male territorial marking, aggressive behaviour, social

recognition and anxiety [18–21]. Although there are three

receptors for AVP (V1a, V1b and V2) the vasopressin 1A

receptor (V1aR), which is widely distributed in the brain,

has been considered to take the predominant role in male

social behaviour. Recently, mutant mice null for the V1aR

have been generated and olfactory investigation tests

have revealed that males exhibit markedly reduced

anxiety-like behaviour and impaired social recognition

(Figure 1a) [22��]. Studies employing pharmacological

antagonists suggested the V1b receptor may take a role

in regulating anxiety but this finding is not supported

with null mutants, although they do show a reduction

in aggressive behaviour [23]. In small rodents, cerebral

ventricular infusions of OT lead to a general non-
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selective increase in social affiliation and reduction in

anxiety and aggression [24–28]. In both sexes, overcom-

ing anxieties such as neophobia, and inhibiting aggression

are prerequisites to increasing social contact thereby

enabling the formation of social bonds.

Mammalian social bonding
The mammalian genus Microtus, has provided an excel-

lent model for the study of social relationships. Prairie

voles (Microtus ochrogaster) are socially monogamous with

biparental care, whereas the closely related meadow vole

(Microtus pennsylvanicus) is solitary and promiscuous [29].

Female prairie voles are brought into oestrus by both

chemosignals from males and sustained mating. This

induces central OT release and enables females to form

a long-lasting selective partner bond. In the absence of

both mating and the concomitant OT release, central

infusions of OT, or pulsatile peripheral administration,

can also induce partner preferences in sexually naı̈ve

female prairie voles [30,31]. Furthermore, if pre-treated

with selective OT antagonists, mated female prairie

voles fail to show these selective partner preferences,

which indicates that this peptide is required to both

increase social contact and form selective bonds [26].

In effect, the vaginal stimulation created by sustained

mating induces effects similar to parturition, namely

olfactory recognition and social reward, but the selective

bond in this context is with the male partner and not the

offspring.

In the male prairie vole, AVP is released centrally follow-

ing either cohabitation or mating with a female leading to

the development of a pair-bond, increased aggression

towards strange males and paternal care (Figure 2a)

[18]. Treatment of males with an AVP antagonist pre-

vents the development of partner preference and parental

care after mating. Significantly, the differences in social

behaviour of prairie and meadow voles are associated with

variation in the neural expression of AVP receptors. When

compared with non-monogamous voles, monogamous

species have lower densities of V1aRs in the lateral

septum, lateral habenula and central gray and higher

expression in the ventral forebrain and mesolimbic DA

reward pathway [32–34]. Although the sequence of the

V1aR gene is >99% convergent between these two

species, they differ in the 50 regulatory region of the

gene. The monogamous species have a repetitive micro-

satellite sequence that is absent in the promiscuous

species, which might account for the different distribu-

tion of receptors and hence social behaviour [35,36].

Interestingly, the ventral forebrain expression of V1aR

is also higher in the monogamous California deer mouse

and marmoset monkey when compared with that of

closely related promiscuous species, which suggests con-

vergent evolution of AVP-mediated circuits as a proxi-

mate mechanism for social attachment in monogamous

species [37–39].
www.sciencedirect.com
Recent transgenic studies have further explored the role

of V1aRs in the regulation of mammalian social beha-

viour. Male mice expressing the prairie vole V1aR gene

linked to its upstream sequence had similar V1aR brain

expression to the monogamous prairie vole. Interestingly,

when male mice were administered with exogenous AVP,

only those carrying the V1aR transgene exhibited signif-

icantly increased affiliative behaviour towards females

(Figure 1b) [35]. The same gene transferred into the

rat septum leads to an increased ability of males to form

social olfactory memories [40]. Moreover, overexpression

of V1aR through a viral vector into the ventral forebrain of
Current Opinion in Neurobiology 2004, 14:777–783
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the non-monogamous male meadow voles heightens pair-

bond formation even with a shortened cohabitation per-

iod and without the need for mating with the female

partner (Figure 2b) [41��]. It does not, however, increase

paternal care, which suggests that distinct neural circuits

mediate paternal care and social-bond formation. Indeed,

infusions of V1aR antagonists into the ventral forebrain

selectively block female partner preference but not pater-

nal care in male prairie voles, whereas infusions into the

medial amygdala block paternal care but not partner

preference [41��].

Importantly, the increased social bonding arising from

greater V1aR levels in the ventral forebrain of meadow

voles is not established if their dopamine D2 receptors

have been blocked previously. Manipulation of either the

neurotransmitter DA in the NAcc or AVP signalling in the

ventral forebrain can prevent or stimulate the formation

of partner preference in prairie voles [42�]. It is argued

that partner bond formation by males is dependent upon

an interaction between AVP and the DA reward system,

with the release of DA during mating leading to an

association between the familiar cues of the mate (e.g.

odour) and reward [41��]. It is unclear whether AVP

signalling acts directly upon the DA reward system or

if its role is simply to increase social contact facilitating

the association between odour and reward. A similar

association between OT and DA pathways exists in

female prairie voles, in which blockade of DA D2 recep-
Current Opinion in Neurobiology 2004, 14:777–783
tors in the NAcc prevents OT-induced partner preference

formation (Figure 3) [17��].

Olfaction and social reward
The brain’s oxytocinergic system together with olfactory

recognition underpins the formation of female social

relationships, be they with mates, offspring or kin. The

formation of these relationships requires familiarity,

which for kin is brought about by prolonged contact

and grooming. For completely novel stimuli such as

strange males, or newly born offspring, however, over-

coming neophobia is of some significance and it is note-

worthy that OT knockout mice exhibit altered anxiety

levels [43,44]. In the context of mate recognition by the

female, the formation of this familiar relationship involves

sexual activity, which can only occur when the female is

in oestrus. Offspring recognition immediately follows

parturition, the female having undergone pregnancy.

Both pregnancy and oestrus provide an endocrine context

for the synthesis of OT and OT receptors. Oestrogen acts

through the oestrogen receptors ERa and ERb; ERb is

expressed in the hypothalamic neurons that synthesize

OT [45], whereas ERa is required for the synthesis of OT

receptors in the amygdala [46]. Interestingly, both the

ERa and the ERb knockout mice are similarly impaired

in social recognition tests as observed in the OT knockout

mice [47,48,49��]. Hence, in the context of oestrus and

parturition, the female’s brain undergoes radical reorga-

nisation with respect to the synthesis of OT and its
www.sciencedirect.com
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receptor. The key areas of the brain associated with social

recognition and preference are the olfactory bulb, the

amygdala and the NAcc.

Although the olfactory bulb has no oxytocinergic term-

inals there is an abundance of OT receptors. This mis-

match of terminals with receptors is functionally

addressed by the neurohumoral release of OT into cere-

brospinal fluid at parturition and mating. These signifi-

cant biological events produce the changes in sensitivity,

synaptic efficacy and neural firing in the olfactory bulb

that are part of the olfactory learning process for social

familiarity [50,51]. Hence, OT infusions into the cerebral

ventricles influence social olfactory memory in rats [52],

whereas OT infusion in the olfactory bulb reversibly

increases both the frequency and the amplitude of spon-

taneous excitatory postsynaptic currents of granule cells

by both pre- and post-synaptic mechanisms [53]. More-

over, OT infusions into the amygdala, a primary relay for

olfactory processing, restore social recognition in OT

knockout mice [47]. The amygdala has reciprocal con-

nections with the NAcc, and both structures show

enhanced levels of immunoreactivity and increased DA

transmission in rats following exposure to biologically

significant odours [54]. OT receptors are particularly

notable in both the shell and the core of the NAcc and

have been implicated, together with DA release, in pair

bond formation in the monogamous female vole [17��,32].

Moreover, if the socially relevant behaviour is experi-

enced in the same context as neutral odours, and pre-

sumably other social sensory cues, a conditioned

association of these second order cues as attractive beha-

viourally rewarding properties can develop (Figure 3)

[55].

Conclusions
A wealth of data have appeared in recent years that have

focused attention upon the role of OT and AVP in the

regulation of social behaviour. These neuropeptides

belong to a family of nonapeptides with a long evolu-

tionary history of regulating invertebrate and vertebrate

behaviour. In mammals, it is generally females that form

social relationships mainly with other females and off-

spring, whereas social affiliation among males is much less

common. However, most of our understanding of the

neurobiology of social behaviour in mammals arises from

the findings from two species of vole, one monogamous

and the other promiscuous.

The biological complexity of monogamy can be reduced

to differences in V1aR distribution in the male brain,

which underlies the formation of female partner prefer-

ence through olfactory reward. There are remarkable

similarities in this monogamous male-based olfactory

reward system to that which is well established across

many female mammals; namely offspring bonding

induced by parturition and male partner-preference
www.sciencedirect.com
induced by mating. Olfaction is the primary sensory mode

in the majority of mammals and recent work has high-

lighted the associations among odour cues, OT, AVP and

DA-reward systems in the brain during the formation of

mammalian social relationships.

This association of odour cues with social reward is

facilitated in the non-monogamous species by infusions

of receptor agonists for these neuropeptides and also for

the DA D2 receptor, whereas antagonists block odour-

induced partner preferences in the monogamous species.

The extended courtship period that males undertake to

bring monogamous female prairie voles into oestrus pro-

vides a means of imprinting olfactory recognition of

conspecifics. These sensory cues acquire behaviourally

rewarding properties through connections with the NAcc,

which further serves as a template for conditioning other

secondary sensory cues. Hence, the expansion of features

that become familiar and rewarding consolidates selective

individual recognition for conspecifics with many com-

mon features and few differences.

Large brained primates, including humans, also form

extensive and complex social bonds, but these species

have poorly developed olfactory systems. The extent to

which the ventral striatal reward system is common to

primate social behaviour and what makes this sustained

and complex are important questions for the future. Is the

distribution of V1aRs similar to that in monogamous

voles? Is it the complexity of social cues that access

the NAcc through the frontal cortex that has taken over

from olfactory cues? In primates, these relationships are

not just restricted to prominent biological events like

mating or parturition, so what other aspects of social

organization have acquired this prospensity to ‘imprint’

the brain’s reward system?
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