The rising number of college students with disabilities and federal regulations concerning them impel educators to increase their own and nondisabled students' awareness of learning disabilities, physical disabilities, and emotional disorders. We describe simulation activities, discussion topics, and speakers appropriate for courses in abnormal psychology and perception. Students who simulated auditory or visual disabilities reported increased empathy toward people with disabilities, greater understanding of the stigma associated with disability, and a heightened appreciation for their sensory systems. We suggest that interested faculty work with existing campus offices for disabled students to implement these activities.

The mandate for higher education to provide education to students “otherwise qualified” who have learning disabilities, emotional problems, and other handicaps was outlined in Section 504 of the Rehabilitation Act of 1973 (Scott, 1990). Accordingly, instructors and nondisabled students should understand the concepts of learning disability and emotional disorder and know the unique needs of people affected by these conditions. This need for understanding is especially important because the number of disabled students attending college has steadily risen. Hippolitus (1987) estimated that 18,300 students with learning disabilities were admitted to colleges in 1985, and another 7% to 20% will experience some type of emotional disorder during their college career.

Increasing disability awareness of nondisabled students and faculty is also vital due to the prevalent stigma of disability. The stigma of mental illness is more prominent and documented (O'Grady, 1988), but the stigma of being physically disabled is also widespread (e.g., Fichten & Amsel, 1988). Burgo (1992) stated that the attitudinal barriers that society holds toward the disabled are far more insidious than structural barriers.

On our campus, the Committee of Services for Students with Disabilities and the Dean of Students Office attempt to heighten awareness through a 2-day Disability Awareness Program. Three major components of the program are as follows: (a) Nondisabled faculty and students can “adopt” a disability for the day, (b) faculty are encouraged to provide classroom activities that increase awareness, and (c) speakers are scheduled to address these issues. Such disability simulations have been used successfully not only in colleges and graduate schools (Glazzard, 1979) but also in high schools (Hallenback & McMaster, 1991) and elementary schools (T. W. Jones, Sowell, J. K. Jones, & Butler, 1981).

Three Program Components

We describe in this article how we incorporated the three components in abnormal psychology and perception courses. We also specify possible discussion topics to be used after each event.

Disability Simulation

Nondisabled individuals could select a visual impairment that simulated macular degeneration (using light-filtered glasses from the Eye Research Institute of Boston that block the central area of the visual field), a hearing deficit (using Flents Model No. 241 sound-reducing earplugs), a motor disability (using a wheelchair, using crutches, or wearing splints on the fingers of their dominant hand), or a psychological disability (not talking for the day). Participants received any equipment they needed for the simulation in the morning and then conducted their daily activities while simulating the disability. At the end of the day, participants returned the equipment and were asked to complete a questionnaire about their experiences. At a reception afterward, the nondisabled students could interact socially with students with disabilities.

In the abnormal psychology course, participants discussed the stigmatizing process (E. Jones et al., 1984), using their experiences as examples. The discussion in the perception course focused on two rationales for studying perception. The first is that senses tend to be taken for granted. Participants related the general difficulties they encountered and acknowledged the importance of preserving their senses by avoiding high-risk behavior that may result in injuries to the sensory organs. The second rationale is that perception is fundamental to psychology (e.g., Goldstein, 1990). To show the role perception plays in learning and memory, students itemized their difficulties during classes in which they simulated the disability, and they noted the relation between perception and emotion (e.g., Zimbardo, Andersen, & Kabat, 1981).
Classroom Activities

Three activities were used in two abnormal psychology sections (ns = 40 and 90) to introduce the topic of childhood disorders and learning disabilities, such as dyslexia and dysgraphia. One activity involved projecting overhead transparencies backward while students attempted to take notes. The second activity instructed students not to say any word containing the letter e (to simulate expressive language disorders). The third activity was a mirror-tracing demonstration (using a Lafayette Instruments Mirror Tracer Model No. 31010) to approximate a learning disorder. Two volunteers attempted to draw a line within the boundaries of a maze while looking at their hand and the maze in a mirror, which reverses the image. Volunteers described the frustration of performing the task.

These activities were intended to give students insight into the emotional aspect of the disorder, rather than the exact experience. The instructor explained how students with learning disabilities face this kind of struggle continuously and how individual differences in learning styles occur in students with and without disabilities. The controversies in dyslexia research (e.g., Solan, Sutja, Ficarra, & Wurst, 1990; Vellutino, 1987) can then be fully described.

Speakers

A third important, although not novel, technique to increase students' awareness is to use speakers who can help students empathize with people with disabilities and understand different disorders. In abnormal psychology, effective speakers have been a person with bipolar disorder and another whose relative committed suicide despite professional treatment. Students can write a reaction paper after hearing the speakers.

Evaluation of the Simulation Activity

From the perception class of 24 students, 18 (11 women, 7 men) students volunteered to participate in exchange for class credit. Twelve students simulated an auditory disability, and 6 simulated a visual disability. The 6 students who did not participate cited scheduling conflicts as the reason.

Students who adopted a disability completed a two-section questionnaire about their experiences. One part was a semantic differential probing the participants' emotional experience during the simulation. Results are presented in Figure 1. For presentation purposes, the positive emotions are listed on the left side of the graph, and the negative emotions are listed on the right (Sommer & Sommer, 1991).

Visual and auditory participants responded similarly and mostly in the negative direction. The strongest negative reactions were for *awkward* and *isolated*, followed by *frustrated* and *anxious*. Somewhat surprising, the *happy*-*sad* and the *cognitive*-*angry* scales were not as intense as the other reactions.

The second part of the questionnaire asked 10 open-ended questions concerning the participants' experiences and their attitudes. Four of these questions are relevant to this article. Did participants see people with disabilities differently after simulating their disability? Participants mentioned the challenges of routine tasks that nondisabled people take for granted (n = 11), emotional empathy with people with disabilities (n = 7), and the mental and physical strength of people with disabilities (n = 2).

Did participants view nondisabled people differently? Participants noted how nondisabled people act toward people with disabilities (n = 9), such as being “distant,” “judgmental,” “not as friendly,” and “ignoring.” Participants also wrote how “lucky” nondisabled people are (n = 3). Such responses support our major goals to have students (a) empathize with people with disabilities, (b) understand the stigma associated with disability, and (c) not to take their senses for granted.

How would the participants change their interactions with people with disabilities? Students said they would be “more sensitive” or “more patient” with people with disabilities (n = 7), they would speak louder to hearing-impaired people (n = 3), they would offer assistance more (n = 3), and they would be more respectful (n = 2). One student said the exercise would not change her interactions, much because she already respected and interacted with people with disabilities.

How did the simulated disability affect participants' ability to function in class? Not surprising, all auditory disability participants mentioned that they had to listen more closely to the instructor, whereas visual disability participants cited their difficulties in seeing the overheads and chalkboard and in writing notes. Two auditory disability participants mentioned that they became less attentive and had more daydreams; two others reported being distracted by ambient sounds, especially when the class divided into small discussion groups. These results should prompt teachers to be more sensitive to the needs of students with disabilities.

Conclusions

These activities have been used successfully in teaching abnormal psychology and perception. They can also be used in other psychology courses, such as introductory and developmental psychology. Faculty interested in these activities may contact their office that serves students with disabilities to develop demonstrations for the entire college community. We recommend that college curricula address
issues concerning the rights and needs of the differently abled in a variety of classroom and extracurricular settings to ensure all members of our society the rights and acceptance they deserve. After structural and attitudinal barriers are eliminated, people with disabilities can flourish and contribute more fully to society and to everyone's self-awareness.

References


Notes

1. We thank the SUNY-Oswego Learning Enhancement Office, Committee for Services to Students with Disabilities, and the Dean of Students Office, especially Inez Alfors and Kathy Evans. We also thank Monica Everett for her assistance with the literature review, and Barbara Watters, Kevin Wallace, Ruth Ault, and three anonymous reviewers for their helpful comments.

2. Requests for reprints should be sent to Stephen A. Wurst, Department of Psychology, SUNY—College at Oswego, Oswego, NY 13126; e-mail: wurst@oswego.oswego.edu.

Promoting Human Factors Psychology Thinking Through Design Assignments

David M. Carkenord
Longwood College

This article describes an assignment for use in courses covering human factors psychology. The assignment requires students to identify a poorly designed object they encounter in their daily lives and to suggest an alternative design that would be more effective and user-friendly. This exercise allows students to experience the type of thinking and decision making involved in human factors psychology. Students prove to be creative with their designs, and they evaluate the assignments favorably.

Sanders and McCormick (1993) stated that human factors psychology "seeks to change the things people use and the environments in which they use these things to better match the capabilities, limitations, and needs of people" (p. 4). Thus, a major goal of human factors psychology is the design of effective and user-friendly machines, tools, and systems. Teachers of undergraduate human factors psychology should foster in students a basic understanding of and appreciation for this primary theme. Promoting such understanding can be challenging, however, due in part to the limited work experiences of students and limited resources of the typical academic department. For example, it is difficult for students to reflect on the design of machines or equipment they have used in previous jobs due to their