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Dedication

To Edmund Deaton, who taught me Euclidean Geometry “Texas style.”
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Preface

0.1 For the Student

These notes cover most of what would typically be included in any first
course in Linear Algebra. But unlike a textbook, these notes contain very
little in the way of explanations, examples, or proofs of important propo-
sitions and theorems! Instead, they comprise a bare-bones outline of the
subject, simply giving all the necessary definitions and then stating the im-
portant results as exercises which are left to the reader! The idea is for each
student to develop the subject for herself, discovering proofs of theorems
rather than simply reading them in a textbook. In this way, a much greater
depth of understanding of the material should follow. Fortunately, the In-
structor will be there to help! And, in addition to learning linear algebra,
the Student will learn basic strategies of proof and how to speak and write
about mathematics in a careful, rigorous, and ultimately, elegant way.

This philosophy of teaching is old but was championed in recent history
by the American mathematician R. L. Moore (1882–1974). A favorite Chi-
nese proverb of Moore’s was “I hear, I forget. I see, I remember. I do, I
understand.”1. He has been quoted as saying, “The student is taught the
best who is told the least.”2 Indeed, Moore would prohibit students from
consulting books or even talking to each other! Instead, they were to work
everything out for themselves. Of course, in class, Moore would teach stu-
dent how to think about mathematics, how to approach problem solving,
and how to speak and write about mathematics with style.

I was first introduced to the “Moore method” of teaching while still
in high school when I attended a summer program in mathematics at San
Diego State University. There I took a course in Euclidean Geometry taught
by Professor Edmund Deaton in strict Moore fashion. Deaton earned his

1See Halmos, P.R. (1985) I want to be a mathematician: an automathography. Springer-
Verlag: 258

2Parker, John, 2005. R. L. Moore: Mathematician and Teacher
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Ph.D. in mathematics from the University of Texas, Austin, in 1960 while
Moore was still on the faculty there and presumably experienced Moore’s
teaching first-hand. The experience that summer in San Diego was truly
inspirational, starting me on my life-long path as a mathematician.

Jim Hoste
Claremont, CA 2017



0.2. SOME SYMBOLS AND DEFINITIONS ix

0.2 Some Symbols and Definitions

1. N, the set of natural numbers, 1, 2, 3, 4, . . . .

2. Z, the set of integers, . . . , -2, -1, 0, 1, 2, . . .

3. Q, the set of rational numbers, that is, all fractions n
m where n and m

are integers and m 6= 0.

4. R, the set of real numbers. Every real number can be expressed as a
decimal, possibly and infinite decimal.

5. i, the imaginary number
√
−1

6. C, the set of complex numbers, C = {a+ bi | a, b,∈ R}.

7. A ⊂ B, means A is a subset of B, that is, every element of A is an
element of B.

8. F, a field, usually the real or complex numbers.

9. x ∈ S, x is an element of the set S.

10. f(x) is even if f(−x) = f(x) for all x.

11. f(x) is odd if f(−x) = −f(x) for all x.



x PREFACE



Chapter 1

Fields

1.1 Complex Numbers

Definition 1. Let i be the “imaginary number” whose square is −1. The
complex numbers are the set

C = {a+ bi | a, b ∈ R}.

If z = a+ bi, then a is called the real part of z, denoted Re z and b is called
the imaginary part of z, denoted Im z. The complex numbers a + bi and
c+di are equal if and only if their real and imaginary parts, respectively, are
equal. That is, if and only if a = c and b = d. Addition and multiplication
of complex numbers are defined as

(a+ bi) + (c+ di) = (a+ b) + (c+ d)i

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i

Exercise 1. Show all the following properties for complex numbers.

1. Addition and multiplication are commutative, that is,

u+ v = v + u and uv = vu

for all complex numbers u and v.

2. Addition and multiplication are associative, that is,

(u+ v) + w = u+ (v + w) and (uv)w = u(vw)

for all complex numbers u and v.

1



2 CHAPTER 1. FIELDS

3. The numbers 0 and 1 are additive and multiplicative identities, respec-
tively. That is,

0 + u = u and 1u = u

for any complex number u.

4. There exist additive and multiplicative inverses. That is

(a) For every u ∈ C, there exists a unique v ∈ C such that u+ v = 0.

(b) For every u ∈ C with u 6= 0, there exists a unique v ∈ C such
that uv = 1.

5. The complex numbers satisfy the distributive property. That is,

u(v + w) = uv + uw

for any complex numbers u, v, and w.

Definition 2.

1. If z is any complex number, let −z denote its additive inverse. Define
subtraction as w − z = w + (−z).

2. If z is any nonzero complex number, let 1/z denote its multiplicative
inverse. Define division as w/z = w(1/z).

3. If z = a + bi is any complex number, its complex conjugate, denoted
by z, is defined as z = a− bi.

4. The absolute value of z = a + bi, denoted |z|, is defined as |z| =√
a2 + b2.

Exercise 2. Let u, v, and w be any complex numbers. Show that all the
following are true.

1. Re(u+ v) = Re u+ Re v

2. Im(u+ v) = Im u+ Im v

3. u+ u = 2Re u

4. u− u = 2(Im u)i

5. uu = |u|2

6. u+ v = u+ v
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7. uv = u v

8. u = u

9. |uv| = |u| |v|

The complex number a+ bi can be associated to the ordered pair of real
numbers (a, b). This allows us to graph, or plot, a complex number as a
point in the plane using Cartesian coordinates. The horizontal axis is called
the real axis and the vertical axis is called the imaginary axis.

Exercise 3. Plot the following complex numbers in the plane:
5, 0,−5, 1 + i, (−1 +

√
3i)/2, i, i2, i3, i4, 4− 3i.

Exercise 4. Given a point in the plane that represents the complex number
z and given any real number a, describe what point in the plane represents
the complex number az? Does it matter if a is positive, negative, or zero?

Exercise 5. Given two points in the plane that represent the complex num-
bers z and w, give a graphical explanation of how to find the point that
corresponds to their sum z + w.

Exercise 6 (*). Given two points in the plane that represent the complex
numbers z and w, give a graphical explanation of how to find the point that
corresponds to their product zw. This is beautiful, but not so easy to discover.
Follow this outline: Given a point in the plane that represents the complex
number z, consider the line ` through the origin and z and let θ be the angle
this line makes with the real axis. Assume that θ is measured from the real
axis to ` in a counterclockwise fashion

1. Show that z = |z|(cos θ + i sin θ).

2. If z = |z|(cos θ + i sin θ) and w = |w|(cosφ+ i sinφ), show that

zw = |z| |w|(cos(θ + φ) + i sin(θ + φ)).

Combine these facts with the fact that |wz| = |w| |z| to finish the exercise.

Exercise 7. If a point in the plane represents the complex number z 6= 0,
where are the points in the plane that represent the following:

1. −z

2. z
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3. 1/z

The rational numbers Q, the real numbers R, and the complex numbers
C are each examples of a more general mathematical object called a field.
We don’t really need to know what a field is in general, but for completeness,
the definition is given below. Notice how the definition of a field is based
exactly on the properties that are listed in Exercise 1.

Definition 3. A field is a set F with two binary operations, called addition
and multiplication, that satisfy the following:

1. Addition is commutative:

x+ y = y + x for all x and y in F.

2. Addition is associative:

x+ (y + z) = (x+ y) + z for all x, y, and z in F.

3. There is a unique additive identity in F which is denoted 0:

x+ 0 = x for all x in F.

4. Every element has a unique additive inverse:

if x ∈ F, then there exists a unique element y ∈ F such that x+ y = 0.

The additive inverse of x is denoted −x.

5. Multiplication is commutative:

xy = yx for all x, y ∈ F.

6. Multiplication is associative:

x(yz) = (yx)z for all x, y, z ∈ F.

7. There is a unique, non-zero, multiplicative identity in F, denoted by 1:

1x = x for all x in F.

8. Every non-zero element x ∈ F has a unique multiplicative inverse,
denoted by 1/x or x−1:

xx−1 = 1 for all x ∈ F.
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9. Multiplication distributes over addition:

x(y + z) = xy + xz for all x, y, z ∈ F.

If we had started by giving the definition of a field, then Exercise 1
could have said: Show that the rational numbers, the real numbers, and the
complex numbers are all fields. This would have been harder because we
used the fact that R is a field to show that C is a field!

Exercise 8. Show that the integers do NOT form a field.
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Chapter 2

Vector Spaces

2.1 Vector Spaces

For the remainder of this course F will stand for a field. We have three
important examples of a field: either the rational numbers Q, the real num-
bers R, or the complex numbers C. These are perhaps the most important
examples of fields, but they are not the only possible fields. In this course,
we (probably) will not use any fields other than these. The numbers in F
will often be called scalars.

7



8 CHAPTER 2. VECTOR SPACES

Definition 4. A vector space over the field F of scalars is a set V of objects,
called vectors, such that

1. There is a rule, or operation, called vector addition, that associates to
every pair of vectors u, v ∈ V , a unique element of V called their sum
and denoted u+ v, in such a way that

(a) addition is commutative: u+ v = v + u for all u, v ∈ V ,

(b) addition is associative: u+(v+w) = (u+v)+w for all u, v, w ∈ V ,

(c) there exists a unique element of V , called the additive identity
and denoted by 0, such that 0 + v = v for all v ∈ V , and

(d) every vector has a unique additive inverse: if v is any element of
V , then there exists a unique element u of V such that v+u = 0.
We denote the additive inverse of v by −v.

2. There is a rule, or operation, called scalar multiplication, that asso-
ciates to every scalar a ∈ F and every vector v ∈ V a vector in V ,
called the product of a and v and denoted by av, in such a way that

(a) If v is any vector and 1 is the multiplicative identity in F, then
1v = v.

(b) If v is any vector and a, b ∈ F, then a(bv) = (ab)v.

3. Addition and scalar multiplication satisfy the following distributive
laws:

(a) a(u+ v) = au+ av for all a ∈ F and for all u, v ∈ V
(b) (a+ b)v = av + bv for all a, b ∈ F and for all v ∈ V .

We define subtraction of vectors as u − v = u + (−v). If F = Q, R, or C,
then V is called a rational, real, or complex vector space, respectively.

Warning: We are going to use 0 to denote both the number, or scalar,
in F that is the additive identity in F and the vector in V that is the additive
identity in V . You are going to have to be aware of the context to know
whether 0 means the number or the vector!

In general, a vector space is a totally abstract thing. So we need some
concrete examples of vector spaces.

Definition 5. The vector space Fn Let n be a natural number. An ordered
set (x1, x2, . . . , xn) of n elements of F is called an n-tuple. The set of all
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n-tuples is denoted Fn.

We define addition on Fn by

(x1, x2, . . . , xn) + (y1, y2, . . . , yn) = (x1 + y1, x2 + y2, . . . , xn + yn).

If a ∈ F we define scalar multiplication by

a(x1, x2, . . . , xn) = (ax1, ax2, . . . , axn).

Exercise 9. Show that for each n, the set Fn is a vector space over F.

Note that if n = 1, we have that F is a vector space over F.

The vector spaces R,R2,R3, . . . are perhaps our most important exam-
ples as we begin to learn about vector spaces. A nice thing about R,R2, and
R3 is that we can actually visualize them. A vector in R2 is an ordered pair
of real numbers (a, b). These numbers, a and b, are called the components
of the vector. We can think of a vector as a point in the plane using Carte-
sian coordinates, but we can also think of it as a “directed line segment” or
an “arrow” in the plane with any initial point (x0, y0) and terminal point
(x1, y1) = (x0 + a, y0 + b). If the initial point is (0, 0), then the terminal
point is (a, b), the same as the vector. But if the initial point is not (0, 0),
then neither the initial point nor the terminal point need be equal to the
vector (a, b).

Exercise 10. A number of vectors (arrows) in R2 are shown below. For
each one, determine the components of the vector. Are any of the vectors
the same?

-4 -2 2 4

-4

-2

2

4
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Exercise 11. If two vectors in R2 are given as arrows in the plane, show
how to find the vector (an arrow) that corresponds to their sum.

Exercise 12. If a vector v in R2 is given as an arrow in the plane, explain
how to find an arrow corresponding to the vector 2v. More generally, how
do you find an arrow representing av for any real number a?

A vector in Fn is an n-tuple (x1, x2, . . . , xn). Sometimes we will write
this as a row (x1, x2, . . . , xn) and sometimes we will write it as a column
x1

x2
...
xm

.

Exercise 13. Show that the set of all functions f : F → F, with the sum
of two functions defined as (f + g)(x) = f(x) + g(x) and the product of a
scalar and a function defined as (af)(x) = af(x), is a vector space over F.

Definition 6. A function p : F→ F is called a polynomial with coefficients
in F if either it is the zero function, that is, p(z) = 0 for all z, or if there
exist numbers a0, a1, . . . , am ∈ F with am 6= 0 such that

p(z) = a0 + a1z + a2z
2 + . . . amz

m

for all z ∈ F. In the latter case, the non-negative integer m is called the
degree of the polynomial.

Exercise 14 (*). Show that the degree of a polynomial is well defined. That
is, if p : F→ F is a polynomial of degree m, then it cannot be a polynomial
of degree ` with ` 6= m. Equivalently, if p and q are polynomials of different
degrees, then they are not the same function.

Exercise 15.

1. Show that the sum of two polynomials with coefficients in F is a poly-
nomial with coefficients in F.

2. If p is a polynomial with coefficients in F and a ∈ F , show that ap is
a polynomial with coefficients in F.

3. Show that P(F), the set of all polynomials with coefficients in F, is a
vector space over F.
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Exercise 16. Show that 0v = 0 for all v ∈ V . (Warning: The “0” on the
left side of the equality is the additive identity in F, while the “0” on the
right side of the equality is the additive identity in V . The first is a number,
the second is a vector.)

Exercise 17. Show that a0 = 0 for all a ∈ F. (Here both 0’s are the zero
vector in V .)

Exercise 18. Assume V is a vector space over F. Show that (−a)v =
a(−v) = −(av) for every v ∈ V and every a ∈ F. Because of this result, we
will simply write −av for any of (−a)v, a(−v), or −(av).

Exercise 19. Assume V is a vector space over F. Show that −(−v) = v
for all v ∈ V .

Exercise 20. Assume V is a vector space over F with a ∈ F and v ∈ V .
Show that if av = 0, then a = 0 or v = 0.
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2.2 Subspaces of Vector Spaces

Definition 7. Suppose that V is a vector space over F. A subset W ⊂ V is
called a subspace if all three of the following are true.

1. The zero vector 0 is in W . (W contains the zero vector.)

2. If u and v are in W , then so is u+ v. (W is closed under addition.)

3. If u is in W and a is in F, then au ∈ W . (W is closed under scalar
multiplication.)

Exercise 21. Determine if each of the following subsets W of R2 is a sub-
space. Either prove that it is or show that it is not.

1. W = {(0, 0)}.

2. W is a finite set of two or more vectors.

3. W is a line containing the origin, that is, all scalar multiples of some
vector v.

4. W is a line not containing the origin, that is, W = {w + tv} where w
and v are nonzero vectors, w is not a multiple of v, and t ∈ R.

5. W is the set of all vectors v = (a, b) with
√
a2 + b2 ≤ 1.

6. W = R2.

Exercise 22 (*). Show that a subspace of R2 is either

1. {(0, 0)}, or

2. A line containing the origin, or

3. All of R2.

Exercise 23. Give an example of a nonempty subset W of R3 that is closed
under addition but not under scalar multiplication (and hence is not a sub-
space).

Exercise 24. Give an example of a nonempty subset W of R3 that is closed
under scalar multiplication but not under addition (and hence is not a sub-
space).

Exercise 25. If U and W are subspaces of V , show that U∩W is a subspace
of V .
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Definition 8. If W1,W2, . . . ,Wk are subspaces of V , define their sum W1 +
W2 · · · + Wk to be set of all possible sums of vectors from W1,W2, . . . ,Wk.
That is,

W1 +W2 · · ·+Wk = {w1 + w2 · · ·+ wk |w1 ∈W1, w2 ∈W2, . . . , wk ∈Wk}.

Exercise 26. If W1,W2, . . . ,Wk are subspaces of V , show that W1+W2 · · ·+
Wk is a subspace of V .

Exercise 27. Determine the sum W1 +W2 for each of the following exam-
ples.

1. V = R3, W1 = {(x, 0, 0) |x ∈ R}, and W1 = {(0, y, 0) | y ∈ R}.

2. V = P(F), W1 is the subspace of even polynomials, and W2 is the
subspace of odd polynomials.

Exercise 28. Assume that W1,W2, . . . ,Wk are subspaces of V . Show that
W1 +W2 · · ·+Wk is the smallest subspace of V containing each Wi. In other
words, if W is a subspace of V and Wi ⊂W for every i, then W1 +W2 · · ·+
Wk ⊂W .

Definition 9. The vector space V is the direct sum of the subspaces W1,W2, . . . ,Wk,
written

V = W1 ⊕W2 · · · ⊕Wk,

if each vector v ∈ V can be written uniquely as v = w1 +w2 · · ·+wk, where
each wi ∈Wi.

Exercise 29. Determine if the given vector space is the direct sum of the
given subspaces.

1. V = F3

W1 = {(x, y, 0) |x, y,∈ F}
W2 = {(0, 0, z) | z ∈ F}

2. V = F3

W1 = {(x, y, 0) |x, y,∈ F}
W2 = {(0, 0, z) | z ∈ F}
W3 = {(0, z, z) | z ∈ F}
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3. V = P(F), W1 is the subspace of even polynomials, and W2 is the
subspace of odd polynomials.

Exercise 30. Show that if W1,W2, . . . ,Wk are subspaces of V , then V =
W1 ⊕W2 · · · ⊕Wk if and only if both of the following conditions are true.

1. V = W1 +W2 · · ·+Wk

2. If 0 = w1 + w2 · · ·+ wk, with each wi ∈Wi, then wi = 0 for all i.

Exercise 31. Show that if W1 and W2 are subspaces of V , then V = W1⊕W2

if and only if both of the following conditions are true.

1. V = W1 +W2

2. W1 ∩W2 = {0}

Exercise 32. Prove that each of the following statements is true, or give a
counterexample to show that it is false.

1. If W1,W2, and U are subspaces of V such that W1 + U = W2 + U ,
then W1 = W2.

2. If W1,W2, and U are subspaces of V such that V = W1 ⊕ U and
V = W2 ⊕ U , then W1 = W2.
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2.3 Span and Linear Independence

Definition 10. A linear combination of a list of vectors v1, v2, . . . , vk in a
vectors space V over F is a vector of the form

a1v1 + a2 + v2 · · ·+ akvk

where ai ∈ F. The linear combination is called trivial if ai = 0 for all
i and non trivial if at least one of the ai’s is nonzero. The set of all
such linear combinations is called the span of v1, v2, . . . vk and is denoted
span(v1, v2, . . . , vk).

Exercise 33. Show that if v1, v2, . . . , vk are vectors in V , then W = span(v1, v2, . . . , vk)
is a subspace of V . We say that the vectors v1, v2, . . . , vk span W .

Definition 11. A list of vectors v1, v2, . . . , vk in V is called linearly inde-
pendent if a1v1 + a2v2 · · · + akvk = 0 implies that a1 = a2 · · · = ak = 0. In
other words, a list of vectors is linearly independent if it is only their trivial
linear combination that is zero. A list of vectors is called linearly dependent
if it is not linearly independent. In other words, a list of vectors is linearly
dependent if some nontrivial linear combination of them is zero.

Exercise 34. Show that a list of vectors in V is linearly dependent if and
only if one of the vectors is a linear combination of the others.

Exercise 35. 1. Show that (2, 1,−1), (0, 3, 1), and (5, 4,−2) are linearly
dependent in R3.

2. Show that 1, z, z2, . . . , zm are linearly independent in P(F).

3. Show that a list of a single vector is linearly independent if and only
if the vector is nonzero.

4. Show that a list of two vectors is linearly independent if and only if
neither is a scalar multiple of the other.

5. Show that any sublist of a list of linearly independent vectors is linearly
independent.

6. Show that any superlist of a list of linearly dependent vectors is linearly
dependent.

Definition 12. A list of vectors v1, v2, . . . vk is a basis for V if it spans V
and is linearly independent.
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Exercise 36. For 1 ≤ i ≤ n, let ei = (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Fn be the
vector whose i-th component is 1 and all other components are 0. Show that
e1, e2, . . . , en form a basis for Fn. This is called the standard basis.

Exercise 37. Show that a list of vectors v1, v2, . . . vk is a basis for V if and
only if every vector in V can be written uniquely as a linear combination of
v1, v2, . . . vk.

Exercise 38 (**). Basis Extension Theorem Suppose that (v1, v2, . . . , vk)
are linearly independent vectors in V . Suppose further that (v1, v2, . . . , vk, w1, w2, . . . , wj)
span V . Then there is some sublist (u1, u2, . . . , u`) of (w1, w2, . . . , wj), pos-
sibly empty, so that (v1, v2, . . . , vk, u1, . . . , u`) form a basis of V .

Exercise 39 (**). If B1 = (v1, v2, . . . , vn) and B2 = (w1, w2, . . . , wm)
are bases of V , then for each vi there exists some wj such that the list
(v1, v2, . . . , vi−1, vi+1, . . . , vn, wj) obtained from B1 by removing vi and adding
wj is a basis for V .

Exercise 40 (*). If (v1, v2, . . . , vn) and (w1, w2, . . . , wm) are bases of V ,
then n = m.

Definition 13. A vector space is called finite dimensional if it is spanned
by a finite number of vectors. A vector space is called infinite dimensional
if it is not finite dimensional.

Exercise 41. Every finite dimensional vector space has a basis.

Definition 14. If V has a basis (v1, v2, . . . , vn), then n is called the dimen-
sion of V , denoted as dimV .

Additional Exercise 1. Suppose W is a subspace of the finite dimensional
vector space V . Then there exists a basis (w1, w2, . . . , wi, vi+1, vi+2, . . . , vn)
of V such that (w1, . . . , wi) is a basis for W .

Proof: Suppose (w1, w2, . . . , wj) is any set of linearly independent vectors
in W . If we adjoin to these vectors a basis for V , we will obtain a set of
vectors that span V . Hence, by the Basis Extension Theorem, there is a
basis for V that contains w1, w2, . . . , wj as a subset. (One way to say this is
that we can “extend” the list (w1, w2, . . . , wj) to a basis of V . In particular,
notice that j ≤ dim V .

Now let (w1, w2, . . . , wi) be a set of linearly independent vectors in W
where i is as large as possible. We can get such a set as follows. Because
W is a subspace, it must contain 0. If this is all it contains, then i = 0, and
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the largest set of linearly independent vectors in W is empty. Otherwise W
contains a nonzero vector w1. If w1 does not span W , then W contains a
vector w2 not in the span of w1. Thus (w1, w2) are linearly independent. If
they do not span W , then there is a vector w3 in W that is not in the span
of w1 and w2. Hence (w1, w2, w3) are linearly independent. Continuing in
this way, if (w1, w2, . . . , wj) are a set of linearly independent vectors in W
that do not span W , then there must be a vector wj+1 in W that is not in
the span of w1, w2, . . . , wj , in which case we add it to the list of wi’s. And,
(w1, w2, . . . , wj+1) must be linearly independent. This process cannot go on
indefinitely, because, as we just proved, the number of linearly independent
vectors in W cannot exceed the dimension of V . Hence we must eventually
reach a linearly independent set of vectors, (w1, w2, . . . , wi), that span W .
This set is therefore a basis for W .

Now, again using the Basis Extension Theorem, we can extend this basis
to a basis of V . �

Exercise 42. If W is a subspace of the finite dimensional vector space V ,
then W is finite dimensional and dimW ≤ dimV .

Exercise 43. 1. Show that Fn is finite dimensional and dimFn = n.

2. Let m be any nonnegative integer. Show that the set of all polynomials
with degree less than or equal to m and coefficients in F is a finite
dimensional subspace of P(F).

3. Show that P(F) is infinite dimensional.

Exercise 44. Suppose v1, v2, . . . , vk are vectors in the finite dimensional
vector space V . If k > dimV , then (v1, v2, . . . , vk) is linearly dependent.

Exercise 45 (**). Suppose W1 and W2 are finite dimensional subspaces of
V . Then

dim(W1 ∩W2) + dim(W1 +W2) = dim(W1) + dim(W2).
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Chapter 3

Linear Transformations

3.1 Linear Functions and Matrices

Definition 15. A linear transformation, or linear map, is a function T :
V → W from one vector space to another that satisfies both the following
properties:

1. T (v + u) = T (v) + T (u), for all vectors v, u ∈ V .

2. T (av) = aT (v), for all a∈F and for all v ∈ V

Exercise 46. Show that each of the following is a linear map.

1. The Zero Map, 0 : V → W defined by 0v = 0 for all v ∈ V . The
image of every vector in V is the zero vector in W . We will denote
this function by 0. (This is now three different uses of the symbol 0.
What are they?)

2. The Identity Map, I : V → V , defined by Iv = v for all v ∈ V .

3. Differentiation of polynomials, D : P(R)→ P(R).

4. Integration of polynomials: Int : P(R)→ R given by

Int(p) =

∫ 1

0
p(x) dx

5. Multiplying a polynomial by x: T : P(R) → P(R) defined by T (p) =
xp(x).

19



20 CHAPTER 3. LINEAR TRANSFORMATIONS

Exercise 47. Show that the map T : R3 → R2 defined by T (x, y, z) =
(ax + by + cz, dx + ey + fz) where a, b, c, d, e, and f are any real numbers,
is a linear map.

Exercise 48. Show that any linear map from one vector space to another
must take the zero vector to the zero vector, that is, T (0) = 0.

Definition 16. Let L(V,W ) denote the set of all linear maps from V to
W . If T, S ∈ L(V,W ) and a ∈ F, define the function T +S as (T +S)(v) =
T (v) + S(v) and the function aT as (aT )(v) = aT (v).

Exercise 49. Show that if S, T ∈ L(V,W ) and a ∈ F, then S+T ∈ L(V,W )
and aT ∈ L(V,W ).

Exercise 50. Show that if V and W are vector spaces over F, then L(V,W )
is a vector space over F.

Definition 17. If T : V →W is a linear map, the null space of T , denoted
null T is defined to be

null T = {v ∈ V |Tv = 0}.

Exercise 51. Determine the null space of each of the linear maps in Exer-
cise 46.

Exercise 52. If T : V →W is a linear map, show that null T is a subspace
of V .

Definition 18. The function f : X → Y is called one-to-one if f(a) = f(b)
implies that a = b. Equivalently, f is one-to-one if a 6= b implies f(a) 6=
f(b). The function f is called onto if given any b ∈ Y , there is some a ∈ X
such that f(a) = b.

Exercise 53. Show that the linear map T : V → W is one-to-one if and
only if null T = {0}.

Definition 19. If T : V → W is a linear map, the image of T , denoted
image T is defined to be

image T = {Tv | v ∈ V }.

Exercise 54. If T : V → W is a linear map, show that image T is a
subspace of W .
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Exercise 55. If T : V → W is a linear map and V is finite dimensional,
show that

dimV = dim null T + dim image T.

Exercise 56. Suppose that T : V →W is a linear map and both V and W
are finite dimensional.

1. Show that if dim V > dim W , then T cannot be one-to-one.

2. Show that if dim V < dim W , then T cannot be onto.

Additional Exercise 2. Suppose that both V and W are finite dimensional
and that T : V →W is a linear map that is both one-to-one and onto. Then
dimV = dimW .

Suppose T : V → W is a linear map and that (v1, v2, . . . , vn) is a ba-
sis for V and (w1, w2, . . . , wm) is a basis for W . If v is any vector in V ,
then v is some linear combination of the basis element, that is, there exist
a1, a2, . . . , an ∈ F such that v = a1v1 + a2v2 + . . . anvn. Now, because T is
linear, we have

Tv = a1Tv1 + a2Tv2 + . . . anTvn.

What this says is that the values of T on the bases vectors determines
the value of T on all vectors. Each vector Tvi is in W and so is a linear
combination of the basis vectors of W . That is, for each 1 ≤ i ≤ n, there
exist numbers ai1, ai2, . . . , aim such that

Tvi = ai1w1 + ai2w2 + . . . aimwm.

Thus the set of numbers aij for 1 ≤ i ≤ n and 1 ≤ j ≤ m completely
determine the map T . We can arrange all of these numbers into the following
rectangular array with m rows and n columns, which we call an m by n
matrix over F. 

a11 a21 . . . an1

a12 a22 . . . an2
...

...
...

a1m a2m . . . anm


This matrix completely encodes the map T , knowing the bases (v1, v2, . . . , vn)
and (w1, w2, . . . , wm).

Definition 20. An m by n matrix over F is a rectangular array of numbers
from F having m rows and n columns. The matrix is called square if n = m.
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NOTE: If T : Fn → Fm, then we should assume that the bases in question
are the standard bases, (e1, e2, . . . , en) for Fn and (e1, e2, . . . , em) for Fm.

Exercise 57. Write down the matrix that encodes each of the following
linear maps with respect to the standard bases.

1. T : R2 → R3 given by T (x, y) = (2x− y, 3y, 4x+ 2y).

2. T : C3 → C2 given by T (x, y, z) = (2x− iz, 0).

IMPORTANT: A linear map T : V → W is encoded by a matrix!
(Together with a choice of bases for V and W .)
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3.2 Systems of Linear Equations

Consider a system of n linear equations in m unknowns (that is, m variables)

a11x1 + a12x2 · · ·+ a1mxm = b1

a21x1 + a22x2 · · ·+ a2mxm = b2
...

an1x1 + an2x2 · · ·+ anmxm = bn

where all the coefficients aij ∈ F and all the constants bi ∈ F.

Solving the system of equations means finding values (in F) for each of
the variables xi that make all the equations simultaneously true. This set
of values for the variables is called a solution.

Exercise 58. Explain why a system of two linear equations in two un-
knowns, in the case where F = R, can be thought of as corresponding to two
lines in R2. Use this to explain why there will either be no solutions, exactly
one solution, or infinitely many different solutions. Give examples for each
case.

We can use the language of vectors to rewrite the system of equations
as a single equation between vector quantities. First, rewrite the system of
n equations as the following single vector equation.

a11x1 + a12x2 · · ·+ a1mxm
a21x1 + a22x2 · · ·+ a2mxm

...
an1x1 + an2x2 · · ·+ anmxm

 =


b1
b2
...
bn


Here we are writing the vectors as columns. Next, let’s rewrite the left

hand side of this equation as the sum of m vectors
a11x1

a21x1
...

an1x1

+


a12x2

a22x2
...

an2x2

 · · ·+


a1mxm
a2mxm

...
anmxm

 =


b1
b2
...
bn


and then rewrite each of the m vectors on the left hand side of the equation
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as a scalar multiple of a vector

x1


a11

a21
...
an1

+ x2


a12

a22
...
an2

 · · ·+ xm


a1m

a2m
...

anm

 =


b1
b2
...
bn


We now have a single equation with m unknowns. To solve this single

equation is to find values for all the xi’s so that the m vectors on the left
add up to the single vector on the right. Notice that what we are trying to
do is find some linear combination of the vectors on the left that is equal
to the vector on the right! By using matrices, we can rewrite this in a nice
way so as to finally think of having just one equation in one unknown!

We can now write our system of equations as
a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
...

an1 an2 . . . anm




x1

x2
...
xm

 =


b1
b2
...
bm

 (3.1)

where, in order to make sense of the left hand side of the equation, we define
the product of a matrix and a vector as follows.

Definition 21. Suppose A is the n by m matrix over F

A =


a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
...

an1 an2 . . . anm



and v is the vector v =


x1

x2
...
xm

 with entries in F. Then the product Av is

defined as


a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
...

an1 an2 . . . anm




x1

x2
...
xm

 = x1


a11

a21
...
an1

+x2


a12

a22
...
an2

 · · ·+xm


a1m

a2m
...

anm


(3.2)
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Exercise 59. Use Definition 21 to perform the following multiplications.
Write each answer as a single column vector.

1.

(
1 −3
0 1

)(
2
3

)

2.

(
1 0
0 1

)(
a
b

)

3.

0 1 0
1 0 0
0 0 1

4
2
3



4.

1 −12 3
4 −1/2 0
2 −2 3

 1
−5
2


IMPORTANT: Definition 21 says that an n by m matrix A over F

defines a function fA : Fm → Fn by fA(v) = Av.

Exercise 60. Rewrite each of the following systems of equations in matrix
form as in Equation 3.1.

1.
2x + 3y = 4

−15x + y = −2

2.
2x + 3y − iz = 4 + i

−15x + z = −2i

3.
2x − iz + w = 4 + i

−15x + y = −2i
z − w = 0

Exercise 61. Explain why Equation 3.1 can now be thought of as a single
equation with a single unknown. What is the single unknown? What kind
of object is it? (A number? A vector?)

Definition 22. Suppose that A is an n by m matrix over F and that B is
an m by ` matrix over F. Then we can multiply A times B to obtain an
n by ` matrix C = AB over F by defining the k-th column of C to be the
product of A times the k-th column of B.

Exercise 62. Perform the following multiplications.
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1.

(
1 2
3 4

)(
−1 0
0 4

)

2.

(
1 0 −3
3 −1 −1

)−1 0
0 4
6 7



3.


1
3
0
−1

(1 2 3 4 5
)

4.

(
1 0
0 1

)(
a b
c d

)
Definition 23. If A is n by m matrix over F, let A[i, j] denote the entry of
A that lies in the i-th row and j-th column.

Exercise 63. Suppose A is an n by m matrix and B is an m by ` matrix.
Let C = AB. Find a formula for C[i, j] in terms of the entries of A and B.

Definition 24. A matrix A is called diagonal if A[i, j] = 0 whenever i 6= j.
The entries A[i, i] are called diagonal entries and the entries A[i, j] where
i 6= j are called off-diagonal. So, diagonal matrices are ones where all the
off-diagonal entries are zero.

Exercise 64. Show that the product of two diagonal matrices is diagonal. In
particular, show that if A and B are diagonal, then AB[i, i] = A[i, i]B[i, i].

Definition 25. Let M(n,m)(F) be the set of all n by m matrices over F.
If A and B are in M(n,m)(F), define their sum A + B to be the n by m
matrix over F where (A+B)[i, j] = A[i, j]+B[i, j]. If x ∈ F, define the scalar
multiple of A, xA, to be the n by m matrix over F where (xA)[i, j] = xA[i, j].

Exercise 65. Perform the following additions and scalar multiplications.

1.

(
2 −3

√
2

0 i 3

)
+

(
−2 0 3
5 6 −1

)
2.
(
1 2 3 4

)
+
(
5 4 3 2

)
3. 6

1 0 0
0 1 0
0 0 1

− 2

1 2 3
4 5 6
7 8 9


Exercise 66. Show that M(n,m)(F) with addition and scalar multiplication
defined as in Defintion 25 forms a vector space over F.
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3.3 Solving Systems of Linear Equations with Gaus-
sian Elimination

Suppose we want to solve the system of equations

a11x1 + a12x2 · · ·+ a1mxm = b1

a21x1 + a22x2 · · ·+ a2mxm = b2
...

an1x1 + an2x2 · · ·+ anmxm = bn

There is a general method called Gaussian elimination that can always
be used to find all possible solutions (or to determine if none exist). The
process will repeatedly use the following steps to alter the equations, but
not their solution, until it is obvious what the solutions are.

Steps Used in Gaussian Elimination

1. Trade any two equations.

2. Multiply both sides of one of the equations by any non-zero element
of F.

3. Add a multiple of one equation to another equation.

Example 1. Solve the system

3x− 4y + z = 0

x− 2y = 6

2y − 3z = 12

Step 1: Multiply the first equation by 1/3, so that the coefficient of x in the
first equation is 1.

x− 4

3
y +

1

3
z = 0

x− 2y = 6

2y − 3z = 12
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Step 2. Subtract the first equation from the second, so as to eliminate x from
the second equation. We obtain,

x− 4

3
y +

1

3
z = 0

−2

3
y − 1

3
z = 6

2y − 3z = 12

Step 3. Multiply the second equation by −3
2 , so that the coefficient of k in

the second equation is 1.

x− 4

3
y +

1

3
z = 0

y +
1

2
z = −9

2y − 3z = 12

Step 4. Add −2 times the second equation to the third equation, so as to
eliminate y from the last equation. This gives,

x− 4

3
y +

1

3
z = 0

y +
1

2
z = −9

−4z = 30

Step 5. Multiply the last equation by −1/4, giving

x− 4

3
y +

1

3
z = 0

y +
1

2
z = −9

z = −15

2

We now know what z is.
Step 6. Add −1

2 times the last equation to the second equation, so as to
eliminate z from the second equation.

x− 4

3
y +

1

3
z = 0

y = −21

4

z = −15

2
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We now know what y is.

Step 7. Add −1
3 times the last equation to the first equation, in order to

eliminate z from the first equation.

x− 4

3
y =

5

2

y = −21

4

z = −15

2

Step 8. Add 4
3 times the second equation to the first equation, in order to

eliminate y from the first equation.

x = −9

2

y = −21

4

z = −15

2

We now know what all of x, y, and z are.

Exercise 67. Prove that each of the three operations used in Gaussian elim-
ination change the set of equations, but do NOT change the set of solutions
to the equations.

In practice, it is easier to carry out all the above steps by using matrices
and vectors. We can rewrite the initial set of equations as

 3 −4 1
1 −2 0
0 2 −3

 x
y
z

 =

 0
6
12


We need only keep track of the matrix of coefficients and the constant vector
which we combine into one matrix which we call the augmented matrix. In
the augmented matrix, we use a vertical line to separate the coefficient
matrix from the constant vector. The eight steps in Example 1 now become
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 3 −4 1 0
1 −2 0 6
0 2 −3 12

→
 1 −4

3
1
3 0

1 −2 0 6
0 2 −3 12

→
 1 −4

3
1
3 0

0 −2
3 −1

3 6
0 2 −3 12


→

 1 −4
3

1
3 0

0 1 1
2 −9

0 2 −3 12

→
 1 −4

3
1
3 0

0 1 1
2 −9

0 0 −4 30

→
 1 −4

3
1
3 0

0 1 1
2 −9

0 0 1 −15
2


→

 1 −4
3

1
3 0

0 1 0 −21
4

0 0 1 −15
2

→
 1 −4

3 0 5
2

0 1 0 −21
4

0 0 1 −15
2

→
 1 0 0 −9

2
0 1 0 −21

4
0 0 1 −15

2


In the last augmented matrix, the solution appears as the last column.

The three allowable steps, when applied to the augmented matrix, are
now called elementary row operations.

Definition 26. The elementary row operations that may be applied to any
matrix with entries in F are

1. Trade any two rows.

2. Multiply any row by a non-zero element of F.

3. Add a multiple of one row to another row

Definition 27. A matrix is in reduced echelon form if all of the following
are true

1. In every row, the left-most non-zero entry is 1.

2. The left-most non-zero entry of every row is always to the right of the
left-most non-zero entry of the row above.

3. The left-most non-zero entry of each row is the only non-zero entry in
its column.

Exercise 68. Use elementary row operations to transform each of the fol-
lowing matrices to reduced echelon form.

1.

(
2 3
1 −4

)

2.

−1 0 3 −1
0 1 5 3
−2 3 6 2


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3.

 0 0 0 0
0 1 −1 −4
−1 1 −3 0



4.


2 3
1 −4
3 3
6 −2


Exercise 69. What are all possible 2 by 2, 2 by 3, and 2 by 4 matrices in
reduced echelon form?

Exercise 70. What are all possible 3 by 2 and 4 by 2 matrices in reduced
echelon form?

Exercise 71. What are all possible 3 by 3 matrices in reduced echelon from?

Exercise 72. Describe how to use elementary row operations to transform
any matrix to one in reduced echelon form.

Exercise 73. Solve the following systems of linear equations by forming the
augmented matrix and then using elementary row operations to tranform
the augmented matrix into a matrix where all the but the last column is in
reduced echelon form.

1.

2x+ 2y + 10z = −1

2x+ 5y + 16z = −4

−4x− y − 14z = 2

2.

15x− 4y = 53

5x− 2y = 19

3.

2x+ 6y = 8

x+ 3y + z = 6

3x+ 9y + z = 14
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Exercise 74. Describe how any system of linear equations can be solved by
using the elementary row operations to transform the augmented matrix into
a matrix where all but the last column is in reduced echelon form. Describe
how the augmented matrix, once it is in this form, will look if

1. The system has no solutions.

2. The system has a unique solution.

3. The system has infinitely many different solutions.
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3.4 More on Multiplication of Matrices

Let’s explore to what extant multiplication of matrices behaves like mul-
tiplication of real or complex numbers. Recall that we can only multiply
the matrix A times the matrix B if the number of columns of A equals the
number of rows of B.

Exercise 75. How many rows and columns must two matrices A and B
each have in order for both AB and BA to be defined?

Exercise 76. How many rows and columns must a matrix A have in order
for A2 = AA to be defined?

Because of the above, it is often nice to focus only on square matrices of
a given size. Then we can multiply them in any order we wish. But don’t
forget, non-square matrices arise naturally in systems of linear equations.

Exercise 77. Let 0 be the matrix consisting of all zeroes. (Note that we
have one zero matrix for every size matrix.) Show that 0A = A0 = 0 for all
n by m matrices A, where the zero matrices in these equations have to have
the correct sizes. (What sizes are those?)

Exercise 78. With real or complex numbers, if the product of two numbers
is zero, then at least one of the numbers must be zero. Show this is false for
matrices.

Exercise 79. Unlike multiplication of real or complex numbers, multipli-
cation of matrices is NOT commutative. Find an example of two 2 by 2
matrices A and B so that AB 6= BA.

Exercise 80. Show that matrix multiplication is associative. Don’t forget
that in order for A(BC) and (AB)C to be defined, the three matrices will
have to be the correct sizes! Explain what sizes the matrices must be for this
to make sense.

Exercise 81. Show that if A,B and C are matrices of the correct sizes,
then the following distributive laws hold.

1. A(B + C) = AB +AC

2. (A+B)C = AC +BC

Explain what sizes the matrices must be for this to make sense.
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Definition 28. The n by n identity matrix is the n by n matrix In defined
by

I[i, j] =

{
1 if i =j
0 if i 6= j

There is one identity matrix for each natural number n.

Exercise 82. Let A be an n by m matrix over F. Show that

1. InA = A, and

2. AIm = A

Thus multiplicative identities exist for multiplication on the right and for
multiplication on the left.

Non-zero real or complex numbers have multiplicative inverses. The next
exercise explores the analogy for matrices.

Definition 29. Suppose A is and n by m matrix. The m by n matrix B is
called a left (multiplicative) inverse of A if BA = Im. The m by n matrix
C is called a right (multiplicative) inverse of A if AC = In. Usually when
it is obvious we are talking about multiplication, we will just talk about the
right or left inverse, not the right or left multiplicative inverse.

Exercise 83. Given any n and m, show there is an n by m matrix that
does not have either a right or left inverse. (Don’t forget that not all real or
complex numbers have multiplicative inverses!)

Exercise 84. Suppose that A =

(
a b
c d

)
and that ad− bc 6= 0. Let

B =

( d
ad−bc − b

ad−bc
− c
ad−bc

a
ad−bc

)
=

1

ad− bc

(
d −b
−c a

)
.

Show that AB = BA = I2. Thus B is both the left and right inverse of A.

Exercise 85. Suppose that

(
a b
c d

)(
e f
g h

)
=

(
j k
m n

)
. Show that

(ad− bc)(eh− fg) = jn− km.

Use this to show that a 2 by 2 matrix

(
a b
c d

)
has a left and right inverse if

and only if ad− bc 6= 0.
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Exercise 86. Suppose that A is an n by m matrix that has both left and
right inverses. Show that the two inverses are equal. That is, if AB = In
and B′A = Im then B = B′.

Exercise 87. Suppose that A is an n by m matrix that has both a left
and right inverse (which must be the same by Exercise 86). Show that the
inverse is unique. That is, if BA = In and AB = Im and also B′A = In
and AB′ = Im, then B = B′.

Definition 30. A matrix is called invertible if it has both a left and right
inverse. In this case, we denote the inverse of A by A−1.

Exercise 88. If A and B are invertible matrices, then show that AB is
also invertible and that (AB)−1 = B−1A−1. (Here A and B must have the
correct sizes for this to make sense. What sizes?)

How to find the inverse of a matrix, if it has one.
Suppose that A is an n by m matrix and we want to see if there is an

m by n matrix B so that AB = In. Think of B as made up of its columns
b1, b2, . . . , bn. That is, each bi is a vector which is a column of B. Now
Definition 22 says that the columns of AB are A times the columns of B.
So to find the columns of B, we need to solve all of the following equations.

Ab1 =


1
0
...
0

 , Ab2 =


0
1
...
0

 , . . . , Abn =


0
0
...
1


This means we want to use elementary row operations to transform each of
the following augmented matricesA|

1
0
...
0

 ,

A|
0
1
...
0

 , . . . ,

A|
0
0
...
1


into matrices where all but the last column is in reduced echelon form. In
each case we will do the same elementary row operations! Hence we can do
these all at once by starting with the augmented matrix

(A|In) =

A|
1 0 . . . 0
0 1 . . . 0
...

...
...

0 0
... 1


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Example 2. Determine if A =

(
1 2 5
3 4 −1

)
has a right inverse, and if so

find one. We start with the augmented matrix(
1 2 5 1 0
3 4 −1 0 1

)
Using elementary row operations (check this!) we can transform this to(

1 0 −11 −2 1
0 1 8 3/2 −1/2

)

This means that A

xy
z

 =

(
1
0

)
has infinitely many solutions, namely−2 + 11z

3/2− 8z
z

 for any number z. Similarly, the solutions to the equation

A

xy
z

 =

(
0
1

)
are

 1 + 11w
−1/2− 8w

w

 where w is any number. Thus there are

infinitely many right inverses to A, namely all matrices of the form

B =

−2 + 11z 1 + 11w
3/2− 8z −1/2− 8w

z w

 .

The reader should check that no matter what z and w are, AB = I2.

Exercise 89. In Example 2, the matrix A has infinitely many right inverses,
one for each value of z and w. Are any of the right inverses of A a left
inverse of A? Does A have a left inverse?

Exercise 90. Use the method of Example 2 to find the right inverses of the
following matrices, if they exist.

1.

(
3 6
−15 −30

)

2.

(
1 2
3 4

)

3.

0 0 1
0 1 0
1 0 0





3.4. MORE ON MULTIPLICATION OF MATRICES 37

Exercise 91. Use the methodology of Example 2 to give another proof that

A =

(
a b
c d

)
has a right inverse if an only if ad − bc 6= 0. Furthermore,

when it does have a right inverse, it is uniquely given by the formula in
Exercise 84.
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3.5 Elementary Row Operations

Our goal in this section is to see that each elementary row operation corre-
spond to multiplying on the left by a certain kind of square matrix.

Definition 31. Let δnij be the n by n square matrix all of whose entries are
zero except for the entry in row i and column j which is equal to 1.

Exercise 92. Let A be an n by m matrix. Show that (In + aδnij)A is the
matrix obtained from A by adding a times the j-th row of A to the i-th row
of A.

Exercise 93.

1. Show that In+(a−1)δnii is the matrix obtained from the identity matrix
by replacing the 1 in the i-th row and i-th column by a.

2. Let A be an n by m matrix. Show that (In + (a− 1)δnii)A is the matrix
obtained from A by multiplying the i-th row of A by a.

Definition 32. Let Pnij be the n by n square matrix obtained from In by
trading the i-th and j-th rows.

Exercise 94. Show that Pnij = In − δnii − δnjj + δnij + δnji.

Exercise 95. Let A be an n by m matrix. Show that PnijA is the matrix
obtained from A by trading the i-th and j-th rows of A.

Definition 33. An n by n elementary matrix E is an n by n matrix such
that given any n by m matrix A, the matrix EA is obtained from A by
an elementary row operation. From the above exercises we have that every
elementary matrix is of the form In + aδij or Pnij.

Exercise 96.

1. Show that δnijδ
n
rs =

{
0 if j 6= r
δis if j = r

2. Show that (Pnij)
2 = In.

3. Show that (In + aδij)(In − aδij) = In

Exercise 97. Show that every elementary matrix is invertible and that the
inverse is also an elementary matrix. For each of the three types of elemen-
tary matrices, describe its inverse.
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Let’s take a look at Gaussian elimination again, this time from the point
of view of multiplying on the left by elementary matrices. When we want to
solve the single equation in one unknown 5x = 6 we can multiply both sides
of the equation on the left by the multiplicative inverse of 5, namely 1/5.
This gives the solution x = 6/5. Suppose now we want to solve the vector
equation Ax = b. If the matrix A has a left inverse B so that BA = I,
then if we multiply on the left by B we obtain BAx = Bb which is Ix = Bb
or finally, x = Bb. Thus, multiplying on the left by the left inverse of A
solves the equation for x. But what if A does not not have a left inverse?
There may still be a solution, or infinitely many solutions! We can solve the
problem by using Gaussian elimination.

Let’s repeat Example 1. But now, let’s think of each elementary row
operation as multiplying on the left by an elementary matrix.

Example 3. Solve the equation 3 −4 1
1 −2 0
0 2 −3

 x
y
z

 =

 0
6
12


Step 1: Multiply the first equation by 1/3, so that the left-most entry in

the first row is 1. To do this we multiply on the left by the elementary matrix

E1 =

1/3 0 0
0 1 0
0 0 1

. This gives

1/3 0 0
0 1 0
0 0 1

 3 −4 1
1 −2 0
0 2 −3

 x
y
z

 =

1/3 0 0
0 1 0
0 0 1

 0
6
12


which simplifies to 1 −4/3 1/3

1 −2 0
0 2 −3

 x
y
z

 =

 0
6
12


Step 2. Subtract the first row from the second row, so as to eliminate the

left-most entry from the second row. To do this we multiply on the left by

the elementary matrix E2 =

 1 0 0
−1 1 0
0 0 1

. This gives
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 1 0 0
−1 1 0
0 0 1

 1 −4/3 1/3
1 −2 0
0 2 −3

 x
y
z

 =

 1 0 0
−1 1 0
0 0 1

 0
6
12


which simplifies to 1 −4/3 1/3

0 −2/3 −1/3
0 2 −3

 x
y
z

 =

 0
6
12


Step 3. Multiply the second row by −3

2 , so that the left-most entry in the
second row is 1. To do this we multiply on the left by the elementary matrix

E3 =

1 0 0
0 −3/2 0
0 0 1

. This gives

1 0 0
0 −3/2 0
0 0 1

 1 −4/3 1/3
0 −2/3 −1/3
0 2 −3

 x
y
z

 =

1 0 0
0 −3/2 0
0 0 1

 0
6
12


which simplifies to 1 −4/3 1/3

0 1 1/2
0 2 −3

 x
y
z

 =

 0
−9
12


Step 4. Add −2 times the second row to the third row, so as to eliminate

left-most entry from the third row. To do this we multiply on the left by the

elementary matrix E4 =

1 0 0
0 1 0
0 −2 1

. This gives

1 0 0
0 1 0
0 −2 1

 1 −4/3 1/3
0 1 1/2
0 2 −3

 x
y
z

 =

1 0 0
0 1 0
0 −2 1

 0
−9
12


which simplifies to 1 −4/3 1/3

0 1 1/2
0 0 −4

 x
y
z

 =

 0
−9
30


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Step 5. Multiply the last row by −1/4. To do this we multiply on the left

by the elementary matrix E5 =

1 0 0
0 1 0
0 0 −1/4

. This gives

1 0 0
0 1 0
0 0 −1/4

 1 −4/3 1/3
0 1 1/2
0 0 −4

 x
y
z

 =

1 0 0
0 1 0
0 0 −1/4

 0
−9
30


which simplifies to 1 −4/3 1/3

0 1 1/2
0 0 1

 x
y
z

 =

 0
−9
−15/2


Step 6. Add −1

2 times the last row to the second row. To do this we

multiply on the left by the elementary matrix E6 =

1 0 0
0 1 −1/2
0 0 1

. This

gives

1 0 0
0 1 −1/2
0 0 1

 1 −4/3 1/3
0 1 1/2
0 0 1

 x
y
z

 =

1 0 0
0 1 −1/2
0 0 1

 0
−9
−15/2


which simplifies to 1 −4/3 1/3

0 1 0
0 0 1

 x
y
z

 =

 0
−21/4
−15/2


Step 7. Add −1

3 times the last row to the first row.To do this we multiply

on the left by the elementary matrix E7 =

1 0 −1/3
0 1 0
0 0 1

. This gives

1 0 −1/3
0 1 0
0 0 1

 1 −4/3 1/3
0 1 0
0 0 1

 x
y
z

 =

1 0 −1/3
0 1 0
0 0 1

 0
−21/4
−15/2


which simplifies to 1 −4/3 0

0 1 0
0 0 1

 x
y
z

 =

 5/2
−21/4
−15/2


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Step 8. Add 4
3 times the second row to the first row. To do this we

multiply on the left by the elementary matrix E8 =

1 4/3 0
0 1 0
0 0 1

. This

gives

1 4/3 0
0 1 0
0 0 1

 1 −4/3 0
0 1 0
0 0 1

 x
y
z

 =

1 4/3 0
0 1 0
0 0 1

 5/2
−21/4
−15/2


which simplifies to 1 0 0

0 1 0
0 0 1

 x
y
z

 =

 −9/2
−21/4
−15/2


or  x

y
z

 =

 −9/2
−21/4
−15/2


Starting with Ax = b we have repeatedly multiplied on the left by ele-

mentary matrices obtaining the final equation of

E8E7E6E5E4E3E2E1Ax = E8E7E6E5E4E3E2E1b

which is the same as

Ix = E8E7E6E5E4E3E2E1b

because the elementary row operations take A to the identity matrix. Notice
that the product of all the elementary matrices

B = E8E7E6E5E4E3E2E1

is a left inverse of A so that, in the end, we are multiplying both sides of
the original equation on the left by B. Exercise 97 says that each of the
elementary matrices is invertible. If we multiply both sides of

E8E7E6E5E4E3E2E1A = I

on the left by E−1
8 we obtain

E7E6E5E4E3E2E1A = E−1
8 .
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If now multiply both sides on the right by E−1
8 we obtain

E7E6E5E4E3E2E1AE8 = I.

Similarly, we can move E7 from the beginning to the end of the left hand
side of the equation to obtain

E6E5E4E3E2E1AE8E7 = I.

Continuing in this way, we obtain

AE8E7E6E5E4E3E2E1 = I.

Thus A has a right inverse as well as left inverse and hence is invertible.

Exercise 98. Show that if the reduced echelon form of the square matrix A
is In, then A is invertible and A−1 is the product of the elementary matrices
used to take A to reduced echelon form.

Definition 34. Suppose f : X → Y and g : Y → Z are functions. Their
composition is the function g ◦ f : X → Z defined as (g ◦ f)(x) = g(f(x)).

Exercise 99. Suppose f : X → Y and g : Y → Z are functions.

1. Show that if f and g are both one-to-one, then their composition is
one-to-one.

2. Show that if f and g are both onto, then their composition is onto.

3. Show that if their composition is one-to-one, then f is one-to-one.

4. Show that if their composition is onto, then g is onto.

Exercise 100. Let A be an n by m matrix. Then A defines a function
TA : Fm → Fn by TA(v) = Av.

1. Show that TA is a linear map.

2. If B is an ` by n matrix, show that TB ◦ TA = TBA.

Exercise 101. Let A be an n by m matrix.

1. Show that if A has a left inverse, then TA is one-to-one.

2. Show that if A has a right inverse, then TA is onto.
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Additional Exercise 3. Show that if the matrix A is invertible, then it is
square.

Proof: Suppose that A is an n by m matrix that is invertible. This
means that it has both a left and right inverse. By Exercise 101, it fol-
lows that TA : Fm → Fn is both one-to-one and onto. Now by Additional
Exercise 2 we have that n = m. �

Exercise 102. Let A be an n by m matrix. Show that TA : Fm → Fn is
one-to-one if and only if Av = 0 implies v = 0.

Exercise 103. Show that if A is an invertible matrix, then the reduced
echelon form of A is I.

Combine previous exercises to sum up what we know in the following
exercise.

Additional Exercise 4. Suppose A is a matrix with entries in F. The
following are equivalent.

1. A is invertible

2. The reduced echelon form of A is the identity matrix I.

3. TA is one-to-one and onto.

Definition 35. A square matrix is called singular if it is not invertible, and
non-singular if it is invertible.
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3.6 The Rank of a Matrix

Definition 36. Suppose A is an n by m matrix with entries in F. The row
space of A is defined to be the subspace of Fm spanned by the rows of A. The
row rank of A is the dimension of the row space. The column space of A is
defined to be the subspace of Fn spanned by the columns of A. The column
rank of A is the dimension of the column space.

Exercise 104. Show that the row rank of a matrix A is the maximal number
of linearly independent rows in A. Show that the column rank of A is the
maximal number of linearly independent columns in A.

Exercise 105. Suppose that A is an n by m matrix and that E is an n by
n elementary matrix. Show that A and EA have the same row space and
hence the same row rank.

Exercise 106. Let A be a matrix and R its reduced echelon form. Show
that A and R have the same row space and same row rank and that the row
rank is the number of non-zero rows in R.

Exercise 107. Let A be a matrix and R its reduced echelon form. Show
that the null space of TA and the null space of TR are the same.

Exercise 108. Show that the column space of a matrix A is the same as
the image of TA.

Example 4. If we change a matrix A by a row operation, the row space
of A and null space of TA do not change. BUT the column space of A and

image of TA CAN change. Here is an example: Let A =

(
1 2
−1 −2

)
. The

column space is spanned by

(
1
−1

)
and

(
2
−2

)
which has

(
1
−1

)
as a basis.

This is a 1-dimensional subspace of R2 and is the same as the image of TA.

Now let’s change A to row reduced echelon form, R =

(
1 2
0 0

)
. The column

space is now spanned by

(
1
0

)
. So, we see that the column space of A and

the image of TA have changed! However, notice that the dimension of the
column space of A has not changed.

Exercise 109. Let A be an n by m matrix and B an invertible matrix.

1. Show that if any set of columns in A are linearly independent, then
the same set of columns in BA are also linearly independent. (Hint:
Don’t forget that Av is as linear combination of the columns of A.)
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2. Show that the column rank of A and BA are the same because they
both have the same maximal number of linearly independent columns.

3. Show that if R is the reduced echelon form of A, then A and R have
the same column rank.

Exercise 110. Show that for any matrix A, the row rank and the column
rank are equal. (Hint: Consider taking A to reduced echelon form and use
earlier exercises.)

Definition 37. The rank of a matrix is defined to be its row rank (or column
rank—the two are equal).

Definition 38. Let A be an n by m matrix. We say that A has full rank if
its rank is as large as possible, which is the minimum of n and m.

To find the rank of a matrix, put it in reduced echelon form and count the
number of non-zero rows. Thus a square matrix is nonsingular, or invertible,
if and only if it is of full rank. Combing this with Additional Exercise 4 we
now have

Theorem 1. Suppose A is a matrix with entries in F. The following are
equivalent.

1. A is invertible.

2. The reduced echelon form of A is the identity matrix I.

3. A has full rank.

4. TA is one-to-one and onto.
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3.7 Isomorphisms

Definition 39. A linear map T : V → W between vector spaces is called
invertible if there exists a linear map S : W → V such that S ◦ T : V → V
is the identity map on V and the map T ◦ S : W → W is the identity map
on W . The maps S and T are called inverses of each other.

Exercise 111. Show that if T : V → W is an invertible map, then its
inverse is unique.

Exercise 112. Show that a linear map T : V →W is invertible if and only
if it is one-to-one and onto.

Definition 40. A linear map T : V → W that is one-to-one and onto is
called an isomorphism. Two vector spaces are called isomorphic if there is
an isomorphism between them.

Exercise 113. Show that two finite dimensional vector spaces are isomor-
phic if and only if they have the same dimension.

Exercise 114. Suppose V is a finite dimensional vector space and T : V →
V is a linear map. Show that the following three statements are equivalent.

1. T is invertible.

2. T is one-to-one.

3. T is onto.

Remember that linear maps correspond to matrices! BUT, don’t forget,
this correspondence depends on a choice of bases for the vector spaces. Sup-
pose that V is a finite dimensional vector space with basis B = {v1, v2, . . . , vm}.
The vector space is totally abstract—we may have no idea what the vectors
are in V . But by using the basis, the vectors in V correspond to vectors in
Fm. Namely, if v ∈ V , then v is some linear combination of the basis vectors
and we have

v = a1v1 + a2v2 + · · ·+ amvm.

Hence we can record the m-tuple of numbers (a1, a2, . . . , am) to represent v
and this is a vector in Fm. This defines a map

ΦB : V → Fm

by ΦB(a1v1 + a2v2 + · · ·+ amvm) = (a1, a2, . . . , am).
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Exercise 115. The map ΦB : V → Fm is an isomorhpism. (Don’t forget to
show that ΦB is a linear map before showing that it is one-to-one and onto.)

We can now see how a linear map between vector spaces can be de-
scribed by a matrix once bases have been chosen for each space. Sup-
pose that T : V → W is a linear map, that B1 = {v1, v2, . . . , vm} and
B2 = {w1, w2, . . . , wn} are bases for V and W , respectively. Now we have a
chain of maps

Fm
Φ−1
B1−−→ V

T−→W
ΦB2−−→ Fn

which is a composition of linear maps and hence a linear map. But we have
already seen that a linear map from Fm to Fn is represented by a matrix,
namely it is TA for some n by m matrix A.

Exercise 116. Continuing with the discussion above, assume that T (vi) =
a1iw1 +a2iw2 + · · ·+aniwn. Let A be the n by m matrix defined by A[i, j] =
aij. Show that

ΦB2 ◦ T ◦ Φ−1
B1 = TA. (3.3)

Warning: If we use different bases for V or W , or both, the matrix that
represents T will change!

Definition 41. We say that the linear map T : V → W is represented
by the matrix A with respect to the bases B1 = {v1, v2, . . . , vm} and B2 =
{w1, w2, . . . , wn}, of V and W respectively, if Equation 3.3 it true.

Because linear maps are represented by matrices, with respect to choices
of bases, we have all kinds of parallel statements for linear maps and matri-
ces. Here is a nice one.

Exercise 117. Suppose that T : V → W is a linear map, represented by
the n by m matrix A with respect to the bases B1 and B2. Show that T
is invertible if and only if A is invertible. Moreover, if T is invertible, its
inverse is represented by A−1



Chapter 4

Determinants

4.1 Definition of the Determinant

Associated to any square matrix A with entries in F is a number in F called
its determinant and denoted detA. We will prove the following theorem in
a series of exercises and use it to find a formula for the determinant.

Theorem 2. Let M(n,F) be the set of all n by n matrices with entries in
F. There is a unique function det : M(n,F) → F, called the determinant,
that satisfies all the following properties:

1. det In = 1

2. If the rank of A is less than n, then detA = 0.

3. The det is linear in each row. This means that for each i,

det



r1
...

ri−1

av + bw
ri+1

...
rn


= a det



r1
...

ri−1

v
ri+1

...
rn


+ bdet



r1
...

ri−1

w
ri+1

...
rn


where each rj is a row of the matrix, v and w are rows, and a and b
are scalars.
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Exercise 118. Suppose that det : M(n,F) → F is a function that satisfies
the three properties of Theorem 2. Show that the following are true:

1. If A′ is obtained from A by multiplying some row by the scalar a, then
detA′ = adetA.

2. If A′ is obtained from A by adding a multiple of one row to another,
then detA′ = detA.

3. If A′ is obtained from A by trading two rows, then detA′ = −detA.

Exercise 119. Suppose det and det′ are two functions satisfying the prop-
erties of Theorem 2. Suppose that B is obtained from A by elementary row
operations. Then detA = det′A if and only if detB = det′B.

Exercise 120. Show that if det is a function satisfying the properties of
Theorem 2, then it is unique. (Hint: First consider a matrix with less than
full rank. Then consider a matrix that has full rank, and therefore can be
taken to the identity matrix by elementary row operations.)

So, we now know that if a function satisfying the properties of Theorem 2
exists, then it is unique. But we still need to show such a function exists!
We will do this by induction on n.

Exercise 121. If A = (a) is a 1 by 1 matrix, define the determinant as
detA = a. Show that this function satisfies the properties of Theorem 2.

Definition 42. Let A be an n by n matrix. Define Aij to be the n − 1 by
n− 1 matrix obtained from A by removing the i-th row and j-th column.

Exercise 122 (**). Assume that det : M(n,F) → F is a function that
satisfies the three properties of Theorem 2. Fix any i with 1 ≤ i ≤ n+ 1 and
define det : M(n+ 1,F)→ F as

detA =

n+1∑
j=1

(−1)i+jA[j, i] detAji. (4.1)

Show that det : M(n+ 1,F)→ F is a function that satisfies the three prop-
erties of Theorem 2.

Computing the determinant of a matrix by using Equation 4.1 is called
expanding the determinant along the i-th column. Because the determinant
function is unique, it doesn’t matter which column we expand on! This is
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useful in practice: choosing a column that has one or more zeroes shortens
the computation.

Before proving Exercise 122, let’s look at what it says for a 2 by 2 or 3

by 3 matrix. If A =

(
a b
c d

)
then expanding on the first column gives

det

(
a b
c d

)
= adet(d)− cdet(b) = ad− cb.

If A =

a b c
d e f
g h k

 then expanding on the second column gives

det

a b c
d e f
g h i

 = −bdet

(
d f
g i

)
+ edet

(
a c
g i

)
− hdet

(
a c
d f

)
= −b(di− fg) + e(ai− cg)− h(af − cd).

Exercise 123. Compute the determinant of the following matrices.

1.

(
−3 4
1 −2

)

2.

1 0 −1
2 3 −1
1 −2 4



3.


1 0 −1 0
0 1 −2 3
1 −2 5 0
0 0 1 −1


Proof of Exercise 122: Supose that A is an n + 1 by n + 1 matrix and
fix i, the number of the column that we will expand on. We need to show
that the function defined by Equation 4.1 satisfies the three properties of
Theorem 2, assuming that the determinant function applied to each of the
n by n submatrices does satisfy the properties of Theorem 2.

If A = In+1, then each term of the sum in Equation 4.1 where j 6= i will
be zero because A[j, i] = 0 if j 6= i. The term with j = i will be 1 because
Aii = In and we are assuming that for this smaller size matrix, det In = 1.
Thus det In+1 = 1.
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Next we will show that Equation 4.1 gives a function that is linear in
each row. This is going to be really messy to write out! Suppose

A =



r1
...

rj−1

av + bw
rj+1

...
rn+1


where each rk = (rk,1, rk,2, . . . , rk,n+1) is a row vector, v = (v1, v2, . . . , vn+1)
and w = (w1, w2, . . . , wn+1) are row vectors, and a and b are scalars. Define
the n+ 1 by n+ 1 matrices B and C as

B =



r1
...

rj−1

v
rj+1

...
rn+1


C =



r1
...

rj−1

w
rj+1

...
rn+1


.

Out goal is to show that detA = a detB + bdetC. Notice that v and w
appear in the j-th row of B and C and that av + bw appears in the j-th
row of A. So, staying away from the j-th row, we have the same entries. In
particular,

A[k, i] = B[k, i] = C[k, i], if k 6= j.

Moreover, if we strike the j-th row and i-th column out of A, B, and C,
we get the same n by n matrix. That is

Aji = Bji = Cji.

But if we strike out the k-th row and i-th column from each matrix with
k 6= j we get smaller matrices and, because we are assuming the properties
of Theorem 2, we have

detAki = a detBki + bdetCki, if k 6= j.
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Now, let’s apply Equation 4.1 to A, splitting the sum into the first j− 1
terms, the j-th term, and then the last n+ 1− j terms. Regrouping terms
and using the above facts, we get,

detA =

j−1∑
k=1

(−1)k+iA[k, i] detAki

+ (−1)j+iA[j, i] detAji

+
n+1∑
k=j+1

(−1)k+iA[k, i] detAki

=

j−1∑
k=1

(−1)k+iA[k, i](a detBki + bdetCki)

+ (−1)j+i(avj + bwj) detAji

+

n+1∑
k=j+1

(−1)k+iA[k, i](adetBki + bdetCki)

= a

j−1∑
k=1

(−1)k+iA[k, i] detBki + (−1)j+ivj detAji +
n+1∑
k=j+1

(−1)k+iA[k, i] detBki


+ b

j−1∑
k=1

(−1)k+iA[k, i] detCki + (−1)j+iwj detAji +
n+1∑
k=j+1

(−1)k+iA[k, i] detCki


= a

j−1∑
k=1

(−1)k+iB[k, i] detBki + (−1)j+ivj detBji +

n+1∑
k=j+1

(−1)k+iB[k, i] detBki


+ b

j−1∑
k=1

(−1)k+iC[k, i] detCki + (−1)j+iwj detCji +

n+1∑
k=j+1

(−1)k+iC[k, i] detCki


= a detB + bdetC.

It remains to show that if A does not have full rank, then detA =
0. So, let’s suppose that A does not have full rank. Then some row is a
linear combination of the other rows and hence this row can be made to
be the zero vector by using elementary row operations of the type where
we add a multiple of one row to another. If an n by n matrix has a row
of zeroes, then it does not have full rank and hence has determinant equal
to zero because we are assuming that the determinant function satisfies the
properties of Theorem 2 for n by n matrices. Therefore, if A has a row of
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zeroes, Equation 4.1 will produce zero. Hence it suffices to show that the
function defined by Equation 4.1 is unchanged by adding a multiple of one
row to another. Suppose A′ is obtained from A by adding b times the k-th
row to the j-th row. Because we have already shown that Equation 4.1
defines a function that is linear in each row, we get that detA′ = detA +
bdetB, where B is the matrix obtained from A be replacing row j with row
k. Thus, B has two rows that are the same: row j and row k. So, finally,
it remains to show that if A is a matrix with two rows that are the same,
then the function defined by Equation 4.1 produces zero.

Therefore, suppose that A has two rows that are the same, say rs = rt.
Each term in Equation 4.1 with k not equal to either s or t will give zero
because the smaller matrix Aki will have two rows that are the same, and
hence will not be of full rank. Hence its determinant will be zero. Thus two
terms in the sum are left to analyze: the terms where k = s and k = t. The
formula gives

detA = (−1)s+iA[s, i] detAsi + (−1)t+iA[t, i] detAti (4.2)

= (−1)s+iA[s, i](detAsi + (−1)t−s detAti) (4.3)

since the two rows are the same and so A[s, i] = A[t, i]. If the two rows
are adjacent, then t − s = ±1 and Asi = Ati, so we get zero. What if the
rows are separated by one row? That is, |s − t| = 2. In this case, Asi and
Ati differ by swapping two adjacent rows and hence detAsi = −detAti By
Exercise 118. More generally, if |s − t| = p, then the claim is that Asi and
Ati differ by swapping a pair of rows p − 1 times. Thus if p is even, the
signs of the two terms in (4.3) are the same, but the two determinants are
opposite and cancel. Or, if p is odd, the determinants have the same sign,
but the signs of the terms are different and again the terms cancel. �

Exercise 124. If A =

(
a b
c d

)
, show that its determinant is the number

detA = ad− bc.
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4.2 Properties of the Determinant

Definition 43. A matrix is called upper triangular if all entries below the
diagonal are zero. A matrix is called lower triangular if all entries above the
diagonal are zero. A matrix is called triangular if it is either upper or lower
triangular.

Exercise 125. Show that the determinant of a triangular matrix is the
product of the diagonal elements. (Hint: Induct on the size of the matrix. )

Exercise 126. There are three types of elementary matrices. What is the
determinant of each kind?

Exercise 127. Suppose that E1, E2, . . . , Ek are elementary matrices.

1. Show that det(E1A) = detE1 detA.

2. Use induction on k to show that

det(EkEk−1 . . . E1A) = detEk detEk−1 . . . detE1 detA.

Exercise 128. Show that det(AB) = detAdetB. (Hint: Show that A =
E1E2 . . . EkA

′ where each Ei is an elementary matrix and A′ is either the
identity or a matrix whose last row is all zeroes. Now use Exercise 127.)

Exercise 129. If A is invertible, show that det(A−1) = (detA)−1.

Exercise 130. Show that a square matrix is invertible if and only if its
determinant is not zero.

Definition 44. Let A be an n by m matrix. The transpose of A, denoted
AT is the m by n matrix defined as AT [i, j] = A[j, i]. The rows of A are the
columns of AT and vice versa.

Exercise 131. Show that (AB)T = BTAT .

Exercise 132. Show that (A+B)T = AT +BT and that (cA)T = cAT .

Definition 45. An elementary column operation on a matrix A is one of
the following:

1. Swap two columns.

2. Multiply a column by a nonzero scalar.
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3. Add a multiple of one column to another column.

Exercise 133. Let E be an elementary matrix.

1. Show that ET is an elementary matrix.

2. Show that detE = detET .

Exercise 134. Show that an elementary column operation on A can be
achieved by multiplying A on the right by an elementary matrix.

Exercise 135. Show that detA = detAT . Hint: Split this into two cases:
A does not have full rank, and A does have full rank. In the latter case,
recall that A is a product of elementary matrices.

Exercise 136. Show that the determinant of any matrix can also be com-
puted by “expanding on any row.”

4.3 A Formula for the Inverse of a Matrix

Definition 46. Given a square matrix A, its adjugate matrix, denoted Ã,
is defined as Ã[i, j] = (−1)i+j detAji.

Exercise 137 (*). Show that if A is an n by n matrix, then AÃ = (detA)In.
Therefore, if detA 6= 0 a formula for the inverse of A is

A−1 =
1

detA
Ã. (4.4)

Exercise 138. Use Equation 4.4 to find the inverses of these matrices.

1.

(
3 5
−1 2

)

2.

 1 0 3
−1 2 1
2 0 1





Chapter 5

Inner Product Spaces

NOTE: In this ENTIRE chapter we will only consider the field F = R or
F = C.

5.1 Inner Products

Definition 47. Let V be a vector space over F where F = R or F = C. An
inner product on V is a function from V × V to F, where the image of the
pair of vectors (v, w) is denoted by 〈v, w〉, such that

1. 〈v, v〉 ≥ 0 for all v and 〈v, v〉 = 0 if and only if v = 0. (positive
definiteness)

2. 〈v, w〉 = 〈w, v〉 for all v, w ∈ V . (conjugate symmetry)

3. 〈av+ bw, u〉 = a〈v, u〉+ b〈w, u〉 all a, b ∈ F. (linearity in the first slot)

A vector space equipped with an inner product is called an inner product
space.

If F = C, then 〈v, w〉 is a complex number, and so perhaps 〈v, v〉 is a
complex number. But the first property says that 〈v, v〉 ≥ 0 for all vectors v.
This means that 〈v, v〉 is a real number and moreover that it is nonnegative.
Recall that the conjugate of a complex number w is denoted w and defined
as a+ bi = a− bi. In the second property we see that the inner product is
not exactly symmetric—instead it is conjugate symmetric. However, if we
are using F = R, then the conjugate of a real number is itself and we do
have symmetry. The last property says the inner product is linear in the
first position. Combing this with the second property we have the following
result.

57
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Exercise 139. If V is an inner product space, then

〈u, av + bw〉 = a〈u, v〉+ b〈u,w〉

Thus, if F = R, we have that the inner product is linear in both slots.

Exercise 140. If V is an inner product space, show that 〈v, 0〉 = 〈0, v〉 = 0
for all v ∈ V .

The definition of an inner product is motivated by the “dot” product in
Fn.

Exercise 141. If v = (v1, v2, . . . , vn) and (w1, w2, . . . , wn) are vectors in
Fn, show that the function

v · w = v1w1 + v2w2 + · · ·+ vnwn

defines an inner product. We call this the standard inner product on Fn.
If F = R, then we do not need the conjugation. This gives the classic dot
product on Rn, which we call the standard inner product on Rn.

Notice that if we think of vectors in Fn as columns, then v · w is simply
the matrix multiplication vTw. NOTE: Throughout the rest of this chapter
we will think of all vectors as columns so that vT is a row.

Exercise 142. Let A be an invertible n by n matrix with entries in F. Show
that 〈v, w〉 = Av · Aw = (Av)T (Aw) = vTAT Aw defines an inner product
on Fn. Thus there are infinitely many different possible inner products on
Fn.

Exercise 143. Suppose that V is a finite dimensional inner product space
with basis B = {v1, v2, . . . , vn}. Suppose that 〈 , 〉 is some inner product on
V . Show that if we know the value of the inner product on all pairs of basis
elements, then we know its value on any pair of vectors. In particular, let
B be the matrix where B[i, j] = 〈vi, vj〉. Show that

〈x, y〉 = (ΦB(x))TBΦB(y)

for all x, y ∈ V . If V = Fn, the basis is the standard basis, and the inner
product is the dot product, show that B = In.

Exercise 144. For which values of a, b, c, and d will vT
(
a b
c d

)
w define

an inner product on F2?
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Exercise 145. Let V be the vector space of all continuous functions from
[a, b] to F. Show that

〈f, g〉 =

∫ b

a
f(x)g(x) dx

defines an inner product on V .

Definition 48. If V is an inner space, the norm of a vector v is defined to
be ||v|| =

√
〈v, v〉. The distance between two vectors v and w is defined to

be ||v − w||.

Exercise 146 (Cauchy-Schwartz Inequality). If V is an inner product space,
show that

|〈v, w〉| ≤ ||v|| ||w||

for all vectors v and w. Hint: If w 6= 0, start with

0 ≤ 〈v − 〈v, w〉/||w||2, v − 〈v, w〉/||w||2〉

and then expand the right side.

Exercise 147. If V is an inner product space, show that all the following
are true:

1. ||v|| ≥ 0 for all v ∈ V .

2. ||v|| = 0 if and only if v = 0.

3. ||av|| = |a| ||v|| for all v ∈ V, a ∈ F.

4. ||v + w|| ≤ ||v||+ ||w||.

The last property is called the triangle inequality. Why?

Additional Exercise 5. Suppose V in an inner product space.

1. If F = R, show that

〈u, v〉 = (||u+ v||2 − ||u− v||2)/4.

2. If F = C, show that

〈u, v〉 = (||u+ v||2 − ||u− v||2 + i||u+ iv||2 − i||u− iv||2)/4.

Definition 49. Two vectors v and w are called perpendicular, or orthogonal
to each other, denoted as v ⊥ w, if 〈v, w〉 = 0. If W is a set of vectors in
V , we will write u ⊥W to mean that u is orthogonal to every vector in W .
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Exercise 148 (Pythagorean Theorem). If V is an inner product space and
u and v are orthogonal vectors, then

||u+ v||2 = ||u||2 + ||v||2. (5.1)

Conversely, if V is a real inner product space (F = R), show that Equa-
tion 5.1 implies that u and v are othogonal.

Definition 50. If W is a subset of the inner product space V , then the
orthogonal complement of W is defined as

W⊥ = {v ∈ V | v ⊥ w for all w ∈W}.

Exercise 149. If W is any subset of an inner product space V , show that
W⊥ is a subspace of V .

Definition 51. A set of vectors {v1, v2, . . . .vk} in an inner product space is
called an orthonormal system if

〈vi, vj〉 =

{
1 if i = j
0 if i 6= j

Exercise 150. Show that the standard basis on Fn is an orthonormal system
with respect to the standard inner product.

Exercise 151. Show that an orthonormal system of vectors is always lin-
early independent.

Exercise 152. Suppose {v1, v2, . . . , vn} is an orthonormal basis for V . Show
that for any vector v ∈ V ,

v =
n∑
i=1

〈v, vi〉vi

and
||v||2 = |〈v, v1〉|2 + |〈v, v2〉|2 + · · ·+ |〈v, vn〉|2.

Exercise 153. Suppose {w1, w2, . . . , wk} is an orthonormal system in V
and let W be the subspace spanned by {w1, w2, . . . , wk}. Show that for any
vector v ∈ V , we can write v uniquely as v = w + u where w ∈ W and
u ∈W⊥. Show that

w =

k∑
i=1

〈v, wi〉wi

and u = v − w,
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Exercise 154 (Gram-Schmidt Orthonormalization Process). Let V
be an inner product space and {v1, v2, . . . , vk} a set of linearly independent
vectors in V . Let v′1 = v1/||v1|| and inductively define v′i+1 as

v′i+1 = wi+1/||wi+1|| where wi+1 = vi+1 −
i∑

j=1

〈vi+1, v
′
j〉v′j .

Show that for each 1 ≤ i ≤ k we have span(v1, v2, . . . , vi) = span(v′1, v
′
2, . . . , v

′
i)

and that {v′1, v′2, . . . , v′k} is an orthonormal set.

Exercise 155. Apply the Gram-Schmidt process to the basis

{(1, 0,−1), (0, 1, 3), (0, 0, 1)}

of R3 (using the standard inner product on R3).

Exercise 156. Consider the real vector space of polynomials with real co-
efficients and of degree less than or equal to 5 with domain [−π, π] and the
inner product defined in Exercise 145. Apply the Gram-Schmidt process to
the basis {1, x, x2, x3, x4, x5}.

Exercise 157. Show that every finite dimensional subspace of an inner
product space has an orthonormal basis. (Notice that this implies that every
finite dimensional inner product space has an orthonormal basis.)

Exercise 158. Let W be a finite dimensional subspace of an inner product
space V . Show there exists a unique linear map πW : V → W such that
πW (v) = v for all v ∈ W , Null(πW ) = W⊥, and πW is onto. The map πW
is called the orthogonal projection of V onto W . Given a vector v ∈ V , we
might sometimes write projW v for πW (v).

NOTE: In the previous exercise, the fact that πW (v) = v for all v ∈ W
can be described by saying that “πW restricts to the identity map on W .”

Exercise 159. Suppose V is an inner product space and W is a finite di-
mensional subspace. Show that πW ◦ πW = πW .

Exercise 160. Suppose V is an inner product space and W is a finite di-
mensional subspace.

1. Show that (W⊥)⊥ = W .

2. Show that V = W ⊕W⊥.
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5.2 Minimization Problems

Given an inner product space V , a subspace W and a vector v ∈ V , we often
want to find the closest vector in W to v. The next exercise states that the
closest vector of W to v is the orthogonal projection of v into W .

Exercise 161. Suppose that W is a finite dimensional subspace of an inner
product space V and v ∈ V . Then the closest vector in W to v is πW (v).
Equivalently,

||v − πW (v)|| ≤ ||v − w||
for all w ∈W .

Example 5. Consider the vector space of continuous functions from [−π, π]
to R with the inner product defined in Exercise 145. It is hard to compute
values of sinx and easy to compute values of polynomials. So, it is useful
to approximate sinx with a polynomial. Let P5(x) be the subspace of real
polynomial functions of degree at most five. Let’s find the closest element of
P5(x) to sinx by orthogonally projecting sinx into P5(x).

Exercise 162. Use the orthonormal basis for P5(x) found in Exercise 156
to show that

πP5(x)(sinx) = 0.987862x− 0.155271x3 + 0.00564312x5.

Plotting BOTH sinx and the polynomial above, we get the following
TWO graphs. Pretty close!
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Compare this with the following plot of both sinx and the fifth degree
Taylor polynomial 1− x3/3! + x5/5!.
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Example 6. Suppose we want to solve a system of linear equations Ax = b.
There will only be a solution if b lies in the image of the map given by
multiplication by A. In other words, if b lies in the column space Col A of
A. Suppose that b does not lie in Col A. Then we can’t solve the system.
Instead, let’s try to approximate the solution—let’s find the vector x so that
Ax is as close as possible to b. Since Ax is always in the column space of A,
the closest vector Ax to b is the orthogonal projection of b into the column
space. Call this vector b′. Now we can solve Ax = b′ and this gives a vector
x whose image Ax is as close as possible to b.

Exercise 163 (Method of Least Squares). Suppose we want to find the “best
fitting line” to a set of data points {(x1, y1), (x2, y2), . . . , (xn, yn)}. Suppose
the line is given by y = mx+ b. Our task is to find the best choices for the
variables m and b so that the line is as “close as possible” to the data points.
We want to solve the system

x1 1
x2 1
...
xn 1


(
m
b

)
=


y1

y2
...
yn


Of course, if n > 2 it is unlikely that a line contains all the points. That
is, it is unlikely that the vector y = (y1, y2, . . . , yn) is in the column space
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of the the coefficient matrix. Therefore, we will orthogonally project y into
the column space to obtain the vector y′ and then solve the system with y
replaced by y′.

1. Starting with the basis w1 = (1, 1, . . . , 1) and x = (x1, x2. . . . , xn)
for the column space, use Gram-Schmidt to find an orthonormal basis
{w′1, w′2} for the column space.

2. Next, project y into the column space, writing its image y′ as a linear
combination of w′1 and w′2.

3. Now find m and b. It will be helpful to introduce the following notation
for various average values:

x =
1

n

n∑
i=1

xi y =
1

n

n∑
i=1

yi

x2 =
1

n

n∑
i=1

x2
i xy =

1

n

n∑
i=1

xiyi

You will finally give formulae for m and b in terms of x, y, x2, and xy.

4. This method of fitting a line to the data is also called the method of
least squares because the answer minimizes the function

E(m, b) =

n∑
i=1

(yi −mxi − b)2

which is the sum of the squares of the vertical distances between each
data point and the line y = mx+ b. Solve the problem again by using
calculus to find the minimum value of E. Do this by finding the partial
derivatives of E with respect to both m and b and finding out what
values of m and b make both partial derivatives equal to zero.

Example 7 (Fourier Series). There are many cases when it is useful to
approximate a periodic function with sines and cosines. A Fourier approxi-
mation of order n to a continuous function f(x) on the interval [0, 2π] is

a0 +a1 cosx+a2 cos 2x+ · · ·+an cosnx+ b1 sinx+ b2 sin 2x+ · · ·+ bn sinnx.

Exercise 164. Show that the functions

1, cosx, cos 2x, . . . , cosnx, sinx, sin 2x, . . . , sinnx

are an orthonormal set with respect to the inner product given in Exer-
cise 145.
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Exercise 165. Find the Fourier approximation of order 4 to the function
f(x) = x on the interval [0, 2π] by projecting f(x) into the subspace spanned
by

1, cosx, cos 2x, . . . , cos 4x, sinx, sin 2x, . . . , sin 4x.

Using a graphing utility, plot both f(x) and its Fourier approximation.

Exercise 166. Let f(x) be 1 on the interval [0, π] and −1 on the interval
(π, 1]. Find the Fourier approximation of order 4 to the function f(x) on
the interval [0, 2π]. Using a graphing utility, plot both f(x) and its Fourier
approximation.

5.3 Isometries

Definition 52. Suppose T : V →W is a linear map between inner product
spaces. The map T is called an isometry if ||Tv||W = ||v||V for all v ∈ V .
Here the subscripts of W and V have been added to emphasize that the norm
of Tv is taken using the norm in W while the norm of v is taken using the
norm in V .

Exercise 167. Show that an isometry between inner product spaces is in-
jective.

Exercise 168. Suppose that V is a finite dimensional inner product space
and T : V → V is an isometry. Show that T is invertible.

Exercise 169. Suppose T : V → W is a linear map between inner product
spaces. Show that the following are equivalent.

1. T is an isometry.

2. 〈Tv, Tu〉W = 〈v, u〉V for all u, v ∈ V .

3. T takes every orthonormal set of vectors to an orthonormal set of
vectors.

Hint: Use Additional Exercise 5

5.4 Orthogonal Matrices

Definition 53. An n by n matrix with entries in F is called orthogonal if its
columns are an orthonormal set of vectors in Fn with respect to the standard
inner product.



66 CHAPTER 5. INNER PRODUCT SPACES

Exercise 170. Suppose A is an n by n matrix with entries in F. Show that
the following are all equivalent.

1. A is orthogonal.

2. The columns of A form an orthonormal system with respect to the
standard inner product on Fn.

3. ATA = A
T
A = In.

4. A is invertible and A−1 = A
T

.

5. AA
T

= AAT = In.

6. The rows of A form an orthonormal system with respect to the standard
inner product on Fn.

Exercise 171. Show that the determinant of an orthogonal matrix must be
±1.

Exercise 172. Show that the product of two orthogonal matrices must be
orthogonal.

Exercise 173. Suppose that A is an n by n orthogonal matrix with entries
in F.

1. Show that v · w = Av ·Aw for all vectors v, w ∈ Fn.

2. Show that ||Av|| = ||v|| for all v ∈ Fn. (Here the norm is defined with
respect to the standard inner product.

Exercise 174. Let V = R2 with the standard metric.

1. Show that every orthogonal matrix must be of the form(
cos t − sin t
sin t cos t

)
or

(
cos t sin t
sin t − cos t

)

2. If A =

(
cos t − sin t
sin t cos t

)
, show that TA : R2 → R2 is rotation through

the angle t.

3. Let A =

(
cos t sin t
sin t − cos t

)
. Show that A =

(
cos t − sin t
sin t cos t

)(
1 0
0 −1

)
and hence that TA : R2 → R2 is reflection across the x axis followed
by rotaton through the angle t.



Chapter 6

Eigenvalues and Eigenvectors

6.1 Change of Bases

Don’t Forget:

A linear map between vector spaces corresponds to a matrix.

Let’s recall how this works. The simplest case is:

If T : Fm → Fn is a linear map, then their exists an n by m
matrix A such that T (v) = Av for every vector v ∈ Fm. In
otherwords, the image of v is given by multiplying v by the
matrix A. The first column of A is the image of the vector
e1 = (1, 0, . . . , 0), the second column of A is the image of the
vector e2 = (0, 1, . . . , 0), and so on.

More generally:

If V is an m-dimensional vector space and W is an n-dimensional
vector space, then a linear map T : V → W corresponds to
multiplication by an n by m matrix once we have chosen bases
for both V and W . Now is a GREAT time to review Exercise 116!

A particularly simple case is when V = W and we consider a linear map
T : V → V . A particularly simple case of this is when T is the identity.
We are now talking about “a change of baisis for V .” For example, suppose
that V is the space of real-valued polynomials of degree less than or equal
to three. One basis for V is B1 = {1, x, x2, x3} and another basis is the

67
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orthonormal basis B2 obtained from B1 by the Gram-Schmidt process. in
Exercise 156 we found that

B2 =

 1√
2π
,

√
3
2x

π3/2
,−

√
5
2

(
π2 − 3x2

)
2π5/2

,
5
√

7
2

(
x3 − 3π2x

5

)
2π7/2

 .

Suppose v is a vector in V and we express it with respect to the first
basis. For example, suppose that v = 3x3−2x+ 4. With respect to the first
basis, this is

v = 4 · 1− 2 · x+ 0 · x2 + 3 · x3

or

v = (4,−2, 0, 3)

if we just write the components of v. Question: What are the component of
v, the very same vector, with respect to the basis B2? Of course, Exercise 152
gives the answer because B2 is an orthonormal basis. Namely we get

v = 〈v, w1〉w1 + 〈v, w2〉w2 + 〈v, w3〉w3 + 〈v, w4〉w4

where B2 = {w1, w2, w3, w4}.

Exercise 175. Continuing with the above example, suppose v has compo-
nents a = (a1, a2, a3, a4) with respect to the basis

B2 =

 1√
2π
,

√
3
2x

π3/2
,−

√
5
2

(
π2 − 3x2

)
2π5/2

,
5
√

7
2

(
x3 − 3π2x

5

)
2π7/2

 .

Show that the components of v with respect to the basis B1 are given by
AaT , where

A =



1√
2π

0 −1
2

√
5

2π 0

0

√
3
2

π3/2 0 −
3
√

7
2

2π3/2

0 0
3
√

5
2

2π5/2 0

0 0 0
5
√

7
2

2π7/2


.

Thus to go from a linear combination of the basis elements in B2 to a linear
combination of the basis elements in B1, we multiply the 4-tuple of com-
ponents with respect to the basis B2 by the matrix A to get the 4-tuple of
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components with respect to the basis B1. The matrix A is called the “change
of bases matrix.”

To go the other way, from B1 to B2, we must multiply by the inverse of
A. Find A−1.

NOTE: Just to make the previous exercise a bit more clear, consider the
polynomial

f(x) = −

√
5
2

(
π2 − 3x2

)
2π5/2

.

This polynomial has components (0, 0, 1, 0) with respect to B2 and it obvi-
ously has components

(−

√
5
2π

2

2π5/2
, 0,

3
√

5
2

2π5/2
, 0)

with respect to B1, which is what we get if we multiply A times (0, 0, 1, 0)T .

Exercise 176. Let B1 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} and
B2 = {(1,−1, 2), (3, 1,−1), (1, 1, 1)}. Find the change of bases matrix to go
from B1 to B2.

Exercise 177. Suppose that T : V → V is a linear map and that B1 and
B2 are two bases for V . Suppose that T corresponds to the matrix A with
respect to the first basis and the matrix B with respect to the second basis.
Show that

B = C−1AC

where C is the change of bases matrix to go from B2 to B1.

Definition 54. Two square matrices A and B are called similar if there is
an invertible matrix P such that B = P−1AP .

Thus we see that changing the basis for a vector space V will change
the matrix that represents a linear transformation T : V → V to a similar
matrix.

Exercise 178. Show that being similar is an equivalence relation on the set
of square matrices. (See Appendix for more on equivalence relations.)

So, a linear transformation T : V → V corresponds to an equivalence
class of similar matrices.

Big Question: Given a linear transformation T : V → V how
simple can we make the matrix that represents T by simply choosing a
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different basis for V ? Equivalently, given a square matrix A, how simple
can we make it by changing it to P−1AP? Or, saying it yet another way,
given a square matrix A, what is the simplest matrix that is similar to A? If
our goal is to understand what T is like, or what T does, it will be simpler
if we choose a basis such that the matrix representing T with respect to this
basis is as simple as possible. Here we should think of the identity matrix,
or a diagonal matrix, as REALLY simple, and a triangular matrix as next
simple. A randomly chosen matrix is probably not so simple.

6.2 Eigenvectors

Definition 55. Let T : V → V be a linear transformation. An eigenvector
for T is a non-zero vector v such that T (v) = λv for some λ ∈ F. The scalar
λ is called an eigenvalue with associated eigenvector v.

Exercise 179. Let T : V → V be a linear transformation and assume that
V is finite dimensional. Then the matrix A that represents T with respect
to the basis B is diagonal if and only if B consists entirely of eigenvectors.
In the case that A is diagonal, then the diagonal entries are all eigenvalues.

Definition 56. Assume V is finite dimensional. A linear map T : V → V
is called diagonalizable if there is a basis for V such that the matrix that
represents T with respect to this basis is diagonal. Thus, the previous exercise
says that T is diagonalizable if and only if there exists a basis of eigenvectors.

Exercise 180. Let T : R2 → R2 be as follows. Determine if there is a
basis of eigenvectors. If there is, find the corresponding diagonal matrix that
describes T with respect to this basis.

1. T is reflection across the line y = mx.

2. T is rotation around the origin through the angle θ.

3. T is a “shear” map. An example of this is the map T (x, y) = (ax, y),
where a is some nonzero constant.

Exercise 181. Let T : V → V be a linear transformation.

1. Show that v is an eigenvector for T with associated eigenvalue λ if and
only if v is in the null space of T − λId.

2. If V = Rn and T is given by multiplication by the matrix A, show that
v is an eigenvector of T with associated eigenvalue λ if and only if
(A− λIn)v = 0.
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Exercise 182. Let A be an n by n matrix over F. Show that det(A− λIn)
is a degree n polynomial in the variable λ with coefficients in F.

Definition 57. Let A be an n by n matrix over F. The polynomial det(A−
λIn) is called the characteristic polynomial of A.

Exercise 183. Show that if two matrices are similar, then they have the
same characteristic polynomial.

Exercise 184. Let T : V → V be a linear transformation with V finite
dimensional and B a basis for V . Suppose that with respect to this basis, T
corresponds to multiplication by the matrix AB. Show that the characteristic
polynomial of A does not depend on the choice of basis B. In other words,
if we change the basis and get a different matrix we will still have the same
characteristic polynomial. Thus we may define the characteristic polynomial
of T to be the characteristic polynomial of AB for any basis B of V .

Exercise 185. Let T : V → V be a linear transformation with V finite
dimensional. Show that there exists an eigenvector for T with associated
eigenvalue λ if and only if λ is a root of the characteristic polynomial of T .

Exercise 186. Let T : V → V be a linear transformation with V finite
dimensional. Assume that λ is a root of the characteristic polynomial of T .
Show that the set Eλ of all eigenvectors with associated eigenvalue λ forms
a subspace of V . This subspace is called the eigenspace associated to λ.

Exercise 187. For each of the following matrices find the characteristic
polynomial and all of its roots. These are the eigenvalues associated to the
matrix. For each eigenvalue, find a basis for the associated eigenspace.

1. A =

(
1 0
0 −1

)

2. A =

(
0 1
1 1

)

3. A =

1 2 3
0 4 5
0 0 6


Exercise 188. Let T : V → V be a linear transformation with eigenvec-
tors {v1, v2, . . . , vk} and associated eigenvalues {λ1, λ2, . . . , λk}, respectively.
Show that if all of the eigenvalues are distinct, then the eigenvectors are lin-
early independent.
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We will assume the following BIG theorem and its corollaries.

Theorem 3 (Fundamental Theorem of Algebra). If

P (z) = c0 + c1z + · · ·+ cnz
n

is a polynomial with complex coefficients, n ≥ 1, and cn 6= 0, then P (z) has
at least one complex root.

Corollary 4. Every polynomial with complex coefficients can be factored
into linear factors. In other words, if

P (z) = c0 + c1z + · · ·+ cnz
n

is a polynomial with complex coefficients, n ≥ 1, and cn 6= 0, then we can
factor P (z) as

P (z) = cn(z − z1)n1(z − z1)n2 · · · (z − zk)nk

where

n1 + n2 + · · ·+ nk = n.

Here cn and each zi is a complex number. The natural number ni is called
the algebraic multiplicity of the root zi.

Exercise 189. Suppose V is n-dimensional and T : V → V is a linear
transformation.

1. Show that T has at most n distinct eigenvalues.

2. Show that if T has n distinct eigenvalues, then T is diagonalizable.

Definition 58. Suppose V is n-dimensional and T : V → V is a linear
transformation. The algebraic multiplicity of an eigenvalue λ is the algebraic
multiplicity of λ as a root of the characteristic equation. The geometric
multiplicity of λ is the dimension of the associated eigenspace Eλ.

Exercise 190. Suppose V is n-dimensional and T : V → V is a linear
transformation. If λ is an eigenvalue, show that the geometric multiplicity of
λ is always less than or equal to the algebraic multiplicity of λ. Hint: Extend
a basis for Eλ to a basis for all of V and consider the matrix associated to
T defined by this basis.
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6.3 Application: Fibonacci Numbers

The Fibonacci numbers are the sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, . . .

where the first two numbers are 0 and 1, and then each number thereafter is
the sum of the previous two. Thus f0 = 0, f1 = 1 and define fn = fn−1+fn−2

for each n > 1. We can use linear algebra to find a formula for fn! (That
just an exciting statement, not fn factorial.)

Exercise 191. Show that(
fn
fn−1

)
=

(
1 1
1 0

)n−1(
1
0

)
Exercise 192. Suppose that the n by n matrix has n linearly indepen-
dent eigenvectors v1, v2, . . . , vn, with associated eigenvalues λ1, λ2, . . . , λn,
respectively. Let P be the matrix that has vi as its i-th column. Show that
D = P−1AP is diagonal with D[i, i] = λi. (In doing this, ask yourself,
“Why is P invertible?”)

Exercise 193. Find the eigenvalues and eigenvectors of

A =

(
1 1
1 0

)
.

Use this to write A as A = PDP−1 where D is diagonal. What are P and
D?

Exercise 194. Suppose that A is a square matrix.

1. Show that if A is diagonal, then Ak[i, i] = A[i, i]k.

2. If A = PDP−1, show that Ak = PDkP−1.

Exercise 195. Combine the above exercises to show that the n-Fibonacci
number is given by

fn =

(
1
2

(
1 +
√

5
))n − (1

2

(
1−
√

5
))n

√
5

.

Cool! We have a formula for the n-th Fibonacci number! But it is
a pretty weird formula. It is not even clear at all that this formula will
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produce integers at output! What is the easiest way to find f100? Should
we use the formula, or just start with 0, 1, 2, 3, 5, 8 and keep going? We are
going to need a computer for both, although we could, at least in theory,
work out the second approach by hand. Could we even hope to compute
f100 using the formula by hand? The answer is

f100 = 354224848179261915075.

The key to finding this formula was to diagonalize the matrix A which
we could do because it has a complete set of eigenvectors. This method can
be used to find formulae in all sorts of situations that involve the power of
a matrix.



Appendix A

Appendix

A.1 Proof by Induction

Suppose we want to prove not just one statement, but infinitely many state-
ments, S1, S2, S3, . . . . An important method to do such a thing is called
proof by induction. The method is based on the following theorem.

Theorem 5. Let S1, S2, S3, . . . be a sequence of statements. If both of the
following are true:

1. S1 is true, and

2. For every i, if Si is true, then Si+1 is true,

then all the statements are true.

Proof: Assume that S1 is true and that the truth of any one statement Si
implies the truth of the next statement, Si+1. If all the statements are not
true, then there must be some that are false. Moreover, there must be a
first statement in the list that is false, say Sk. Now this first false statement
is not S1, because we are assuming that S1 is true. Hence k > 1. Because
Sk is the first false statement in the list, all the statements before it are true
and, again, there are statements before it because k > 1. Therefore, the
statement Sk−1 is a true statement right before Sk. But now we have that
Sk is true because we are assuming that if any one of the statements is true,
then the next one is. We have arrived at a contradiction: the statement Sk
is both true and false. Hence, our assumption that not all the statements
are true must be wrong. In fact, they are all true! �

Example 8. Prove that 2n > n for every positive integer n.

75
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Solution: We first need to recognize that this is in fact a sequence of
statements, not just one statement. The statements are

S1 : 21 > 1

S2 : 22 > 2

S3 : 23 > 3

...

We will prove that all the statements are true by the method of induction.
The first thing we need to do is prove the first statement, or base case,
21 > 1. Proving the first statement is called “starting the induction.” Since
21 = 2 and 2 > 1, the first statement is true. Next we ned to show that if
any one of the statements is true, then the next statement is true. Doing
this is called “proving the inductive step.” So, we assume that for some
n > 1, 2n > 2. This is our assumption, and using this assumption, we need
to prove that 2n+1 > n+ 1. Notice that

2n+1 = 2 · 2n

> 2n, because we are assuming that 2n > n

= n+ n

> n+ 1, because we are assuming that n > 1

This completes the proof of the inductive step and hence the entire proof
that all the statements are true.

Example 9. Show that 2n ≥ n2 for all n ≥ 4.

Solution: We will prove this by induction on n. If n = 4, the statement
is 24 ≥ 42 which is true because 24 = 16 = 42. Now assume that for some
n > 4, 2n ≥ n2 and consider 2n+1. We have,

2n+1 = 2 · 2n

≥ 2 · n2, by assumption

≥ n2 + n2

≥ n2 + n · n
≥ n2 + 4n, since n > 4

≥ n2 + 2n+ 2n

≥ n2 + 2n+ 1, since n > 4

≥ (n+ 1)2
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This completes the inductive step. Hence 2n ≥ n2 for all n ≥ 4. �

Exercise 196. Use the method of induction to prove each of the following.

1. n! > 2n for all n ≥ 4

2. (1 + x)n ≥ 1 + nx for all x > 0 and n ≥ 1

3. Prove that if x1, x2, . . . , xn are all odd integers, then x1x2 . . . xn is odd.

4.

n∑
i=1

i =
n(n+ 1)

2

A.2 Equivalence Relations

Definition 59. Suppose that S is a set. Let R be a subset of S × S. In
other words, R is a set of ordered pairs of elements from S. If (x, y) ∈ R,
we will write x ∼ y and say that “x is related to y.” We will refer to either
the subset R or the symbol ∼ as “the relation.” The relation R, or said
differently, the relation ∼, is called an equivalence relation if the following
three properties all hold.

1. (reflexive) x ∼ x for every x ∈ S

2. (symmetric) If x ∼ y then y ∼ x

3. (transitive) If x ∼ y and y ∼ z, then x ∼ z

Exercise 197. Determine if the following relations on the given set are
equivalence relations.

1. S = R and x ∼ y if x ≤ y.

2. S = R and x ∼ y if x < y.

3. S is any set and x ∼ y if x = y.

4. S is any set and we declare x ∼ y if x, y ∈ S. In otherwords, every
element is related to every element.

5. Let n be a fixed natural number. S is the set of integers and x ∼ y if
x− y is a multiple of n.

6. S is the set of people in the world and x ∼ y if x loves y.
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7. S is the set of all people who have ever lived and x ∼ y if x and y
share a common ancestor.

Definition 60. Suppose that ∼ is an equivalence relation on the set S. Then
the equivalence class of a ∈ S is defined as

[a] = {b ∈ S | b ∼ a}.

Exercise 198. For each of the relations in Exercise 197 that are equivalence
relations, describe the equivalence classes.


