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The First
1,701,930

KNOotS

he history of knot tabulation is long established, having begun over 120 years ago. In

many ways, the compilations of the first knot tables marked the beginning of the mod-

ern study of knots, and it is perhaps not surprising that as knot theory and topology

grew, so did the knot tables. Over the last few years, we have extended the tables to

include all prime knots with 16 or fewer crossings. This
represents more than a 130-fold increase in the number of
tabulated knots since the last burst of tabulation that took
place in the early 1980s. With more than 1.7 million knots
now in the tables, we hope that the census will serve as a
rich source of examples and counterexamples and as a
general testing ground for our collective intuition. To this
end, we have written a UNIX-based computer program
called KnotScape which allows easy access to the tables.

The account of our methodology is prefaced by a brief
history of knot tabulation, concentrating mostly on events
taking place within the last 30 years. The survey ar-
ticle [Thil] contains further details on the work of the
nineteenth-century tabulators, but, above all, the reader is
encouraged to consult the original sources, in particular
the excellent series of papers by Tait [Tai]. Kirkman’s pa-
pers make fascinating reading, as they abound with origi-
nal ideas and ornate language—his definition of the term

“knot’ is a single sentence of 101 words. Conway’s land-
mark paper [Con] is also highly recommended.

An important feature of our project is that we have
worked in two completely separate teams, producing two
tabulations which were kept secret until after they were
complete.! Although it would be foolhardy to claim with
absolute certainty that our tables are correct, we must re-
port the gratifying experience of finding that our lists of
1,701,936 knots were in complete agreement! Moreover, we
did not use exactly the same methods, the primary differ-
ence being the use of hyperbolic geometry by Hoste and
Weeks and the complete absence of hyperbolic invariants
in Thistlethwaite’s approach. Nevertheless, our overall pro-
grams are similar in spirit and differ little from the methods
of most tabulators who precede us. As part of our tabula-
tion, using Weeks's program SnapPeq we were able to com-
pute the symmetry groups of the knots; we have included
2 short introduction to this beautiful and intriguing topic.

1At a recent conference, people who were aware of our project jokingly scolded us for conversing together.
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Obviously, we now have a great deal of data, and re-
porting on every aspect of the tabulated knots is not pos-
sible. Instead, in the first of three appendices we present
a statistical summary of the census. The second appendix
contains lists of hyperbolic knots with selected symme-
tries, and the final appendix contains brief descriptions of
KnotScape and Weeks's program SnapPea which figures
prominently in our work. We describe the hardware and
software requiremenits of these programs, where to obtain
them, and their capabilities. -

A Brief History of Knot Tabulation

In the late 1860s, the great Scottish physicist William
Thomson (Lord Kelvin) suggested that atoms were knot-
ted vortices in the ether. If only we could better understand
knots, we could unravel the secrets of the atom and of mat-
ter itself! Inspired by this theory, Thomson’s countryman
and fellow physicist, Peter Guthrie Tait, embarked on a ma-
jor investigation of knots which included production of the
first knot tables. By a knot we mean a smoothly embedded
circle in 3-dimensional Euclidean space R®. A knot dia-
gram is a projection of a knot into a plane containing only
transverse double points and, furthermore, drawn with
crossings at each double point so that the embedding can
be recovered from the diagram (Fig. 1). We will consider dif-
ferent knots to be equivalent if there is a homeomorphism
of R? to itself taking one knot to the other. Thus, a single
knot can be represented by infinitely many diagrams, but
only a finite number of diagrams will have a minimal num-
ber of crossings, and it is with respect to this crossing num-
ber that Tait organized his table. The trivial knot, or unknot,
can be drawn with no crossings, the trefoil knot with three,
the figure-eight knot with four, and so on (Fig. 2).

The strategy employed by Tait, and still uséd today in our
tabulation, is simple: enumerate all possible diagrams up to
a given crossing number and then group together those dia-
grams that represent the same knot type. To begin this
process, Tait invented a scheme for encoding knot diagrams.
Many years earlier, Gauss and his student Listing had stud-
ied knots and invented their own notations for this purpose
[Lis]. Although initially he was unaware of their work, Tait’s
scheme is similar. Our own notation, first used by Dowker
and Thistlethwaite [DT, Thil], is a further refinement. It al-
lows any knot diagram with N crossings to be encoded as a
sequence of N (signed) even integers ay, . . ., ay, where the
sequence of absolute values is a rearrangement of 2, 4, ...,
2N. The encoding scheme is described in Figure 1, and its
subtleties and limitations are discussed in the third section.?

Tait considered all such sequences up to seven crossings
and successfully grouped them together by knot type. In 1876,
he published his first table, containing the knots through
seven crossings and all their minimal diagrams. (Figure 2 il-
lustrates these 15 knot types in the order in which they are
listed -in -our .table supplied with the software package
Knotscape, viz. Appendix III). But, daunted by the combi-
natorial explosion of sequences for larger crossing number,
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Figure 1. To encode a diagram, choose a basepoint and orientation
of the knot; in the above figure, the chosen basepoint is indicated
by a black dot at the overpass labeled 1. Travelin:q from this base-
point in the given direction, label points on the knot curve lying di-
rectly above or below crossings with consecutive integers 1,2,3,. ...
Each crossing thus receives two labels, one even and one odd, and
this defines a one-to-one correspondence between the set of odd la-
bels -and the set of even labels. The overcrossing-undercrossing
structure is then captured by associating a minus sign to each even
integer which is the label of an overpass; thus, a diagram is alter-
nating (i.é., ~over-under-over-under~) if and-only if all even integers
have the same sign. The data for this example are displayed in the
table immediately below the figure; because the odd numbers have
been written in their natural order, all the information is contained in
the sequence of signed even numbers, Therefore, for the given choice
of basepoint and direction, the code for this diagramis6 8 — 12 2
14 16 — 4 10. We choose the standard code for the diagram to be
the sequence which is minimal over all choices of starting point and
direction, with respect to a suitable ordering of sequences.

Tait stopped at seven crossings. It is important to remember
that Tait had no theorems from topology to enable him to
distinguish different knots. In fact he wrote, “ .. though I
have grouped together many widely different but equivalent
forms, I cannot be absolutely certain that all those groups
are essentially different one from another.” Indeed, it is the
task of grouping the diagrams together by knot type rather
than enumerating all possible diagrams that remains to this
day the most difficult part of knot tabulation, for producing
all possible diagrams is algorithmic and therefore, at least

theoretically, trivial. However, for a large crossing number,

the sheer number of possible combinations is so huge that e

25 mild refinement of this notation [DH] can be used to encode link diagrams. (A link of k components is the union of a family of k disjoint simple closed curves in Re)




even with today’s high-speed computers, the task of enu-
merating all possible diagrams remains difficult in practice.

To aid in the comparison of different diagrams, Tait in-
vented a certain diagrammatic transformation which pre-
serves crossing number, now known as the flype (Fig. 3).3
He also classified crossings as left-handed with associated
sign —1, or right-handed with associated sign +1 (Fig. 4);
the writhe of the diagram? is then defined as the sum of the
signs of the crossings. He further declared that a crossing is

nugatory (“worthless”) if there is a circle in the projection” -

plane meeting the diagram transversely at that crossing, but
not meeting the diagram at any other point (Fig. 4). Nugatory
crossings can obviously be removed by twisting, so they can-
not occur in a diagram of minimal crossing number. A dia-
gram is reduced if none of its crossings is nugatory.

Tait set forth a number of conjectures concerning al-
ternating knots, none of which was resolved until the ad-
vent of the Jones polynomial in 1984. He conjectured (i)
that reduced alternating diagrams had minimal crossing
nurnber, (ii) that any two reduced alternating diagrams of
a given knot had equal writhe, and (iii) that any two re-
duced alternating diagrams of a given knot were related
via a sequence of flypes. The third of these conjectures im-
plies the second, because flypes preserve writhe. The first
two conjectures have been proved in various ways [Kau,
Murl, Thi2, Mur2, Thi3], but all proofs use properties of
the Jones polynomial or the Kauffman two-variable poly-
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Figure 2. Knots to seven crossings.

nomial. A solution of the third conjecture is given in [MT];
the proof is mostly geometric, but, again, it relies in an es-
sential way on properties of the Jones polynomial. The con-
firmation of these conjectures has significantly lightened
the task of tabulating alternating knots.

After Tait’s first paper appeared, he learned of the work
of the Reverend Thomas P. Kirkman [Kirl, Kir2] who had
himself set out to enumerate knot projections. Kirkman
had used a method quite different from Tait’s; he started

" with a relatively small set of “irreducible” projections.and

then produced complete lists of knot projections by in-
serting crossings in a systematic way. Nearly a century
later, Conway used a modification of Kirkman’s method
with great success [Con]. k

Using Kirkman’s projections Tait Went on to produce ta-
bles, in 1884 and 1885, of alternating knots (and all their
minimal diagrams) through 10 crossings. Just before going
into print, Tait learned of another census of knots through
10 crossings produced by the American C.N. Little [Lit1].
Comparing their work, Tait noted one duplication in his
own table and one duplication and one omission in Little’ S,
and promptly corrected his own table prior to publication.

With Tait’s encouragement, Little went on to tabulate
the 11-crossing alternating knots, starting from the poly-
edral® (sic) diagrams of Kirkman [Lit3]. Little also under-
took the more difficult task of tabulating the nonalternat-
ing knots, ones which admit no altérnating diagram. These

2 @
b_/
-
8

[N

-

O
o0

3Tait had used the word fiype to denote a different kind of transformation, namely a change of infinite complementary region: “fiype” is an old Scottish verb whose ap-
proximate meaning is “to turn or fold back” (as with a sock). Currently, the word * flype” designates the transformation flustrated in Figure 3.

4Tait and Little used the term “twist” in place of "writhe.”
5Kirkman held passionate views on the speliing of certain words.
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Figure 3. Moves on diagrams.

do not appear with fewer than eight crossings, and from
Tait’s first paper, it is evident that initially he did not be-
lieve that nonalternating knots were possible. In fact, the
first proof of the existence of a nonalternating knot did not
appear until 1930. Little states that he worked for 6 years,
from 1893 to 1899, to produce his list of 43, 10-crossing
nonalternating knots [Lit4]. As we shall soon see, his list
had no omissions, but it did have one duplication.

One obstacle to tabulating nonalternating knots is their
sheer quantity. Although nonalternating knots do not pre-
dominate until 13 crossings (as mentioned earlier, they do
not even appear until 8 crossings), it is plausible that the
proportion of knots which are alternating tends exponen-
tially to zero with increasing crossing number. Recently,
this was proved for links by Sundberg and Thistlethwaite
[ST, Thid]. Determining the asymptotic rate of growth of
the number of knots is an interesting problem [ES]}; it is
known [Wel, Thi4] that if K, denotes the number of n-cross-
ing prime knot types, then lim sup(K,)"" < 13.5.

Another problem with nonalternating diagrams is that
flypes no longer suffice to pass between all minimal dia-
grams of the same knot. Although this was apparent to
Little, he erroneously believed that just two kinds of moves,
the flype and the 2-pass, were sufficient.5

Finally, after over 25 years of laborious handwork, Tait,

Kirkman, and Little had created a table of alternating knots

through 11 crossings and nonalternating knots through 10
crossings. Of course, in the absence of a rigorous theory,
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- A double 2-pass: re-route the arc with two

overpasses, and also the arc with two
underpasses

they could not know whether their tables were correct; in-
deed, a few errors have come to light in the ensuing years.
But, remarkably, the table of alternating knots through 10
crossings has stood the test of time. :

The era of rigorous knot theory began in the early part of
this century. In 1914, the subject of topology had developed

‘to the extent that Dehn was able to publish a proof that the
right-handed and left-handed trefoils were distinct [Deh]. In
1927, using the first homology groups of branched cyclic cov-
ers, Alexander and Briggs were able to distinguish all the tab-
ulated knots through nine crossings, with the exception of
three pairs [AB]. In 1932, Reidemeister completed the clas-
sification of knots up to nine crossings, using the linking num- -
bers of branch curves in irregular covers associated to ho-
momorphisms of the knot group onto dihedral groups [Rei].

In 1949, Schubert proved that every knot can be uniquely
decomposed, up to order, as a connected sum of prime
knots (Fig. 4). In close analogy with arithmetic, a knot is
prime if it cannot properly be decomposed as a connected
sum. In the light of Schubert’s theorem, it is only neces-
sary to tabulate prime knots; the composite knots are then
easily constructed by taking connected sums.

Another important consideration is that of chirality. So
far, we have considered two knots to be equivalent if there
is a homeomorphism of R® mapping one to the other.
According to this definition, any knot and its mirror image
(with respect to some plane) are equivalent. But this does
not tally with the layman’s concept of equivalence; a piece

5Thistlethwaite used no fewer than 13 different diagrammatic moves when generating the initial raw fist of 16-crossing nonalternating knots, yet this list of 1,018,774
knots still had 9,868 duplicates, Two of the more exotic moves are illustrated in Figure 3. :
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of rope tied as a left-handed trefoil cannot be manipulated
into a right-handed trefoil. It would be more intuitive to
consider knots Ky and K; to be equivalent if they are re-
lated by an ambient isotopy; by this we mean that there
exists a continuously parametrized family of homeomor-
phisms hy: B3 — R3 (0 = t = 1) such that hy is the identity
map on R® and k; maps K; onto Kp. One can think of ¢ as
representing time, and one can imagine the knot moving in
a viscous fluid; the isotopy describes how to move K to
K, and how the molecules of fluid are moved in the process.
At first, this new definition seems to be radically different
from the original one, but, in fact, it amounts merely to say-
ing that two knots are equivalent if there is an orientation-
preserving homeomorphism of R3 mapping one to the
other. Under this stronger version of equivalence, which
knots remain equivalent to their mirror images? Those that
do are endowed with a special kind of symmetry and are
called achiral or amphicheiral.

When we discuss amphicheirality in more detail later in
the article, we shall use the following alternative definition:
a knot K is amphicheiral if there exists an orientation-
reversing homeomorphism of R3 mapping K to itself. To
see that the definitions are equivalent, simply compose the
homeomorphism of R3 given by either definition with re-
flection in the projection plane.

Amphicheiral knots are important to chemists, who are
often concerned with the right- or left-handedness of mole-
cules. The figure-eight is amphicheiral, a fact that was known
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Figure 5. The 15-crossing amphicheiral knot.

A nugatory crossing

A connected sum
of a trefoil and a
figure-eight knot

to Listing. The trefoil certainly appears not to be equivalent
to its mirror image, but without proof, this cannot be asserted
as a fact. As mentioned earlier, the first proof was given by
Dehn in 1914 [Deh], in the early days of topology.

Tait was interested in the concept of amphicheirality but
did not have an intrinsic definition; he was somewhat ham-
pered by being tied to the projection plane and had rather
artificial distinctions between “kinds” of amphicheirality.
Nonetheless, he successfully identified all amphicheiral al-
ternating knots with up to 10 crossings; he did not consider
nonalternating knots, but, as it happens, there are no am-
phicheiral nonalternating knots with fewer than 12 cross-
ings. He conjectured that amphicheiral knots with odd
crossing numbers could not exist; this is now known to be
the case for alternating knots, but our census has turned
up a 15-crossing nonalternating amphicheiral knot (Fig. 5).

Another way of refining the notion of equivalence is to
consider the orientation, or direction, of the knot curve. A
knot is said to be invertible (or reversible) if there is an
ambient isotopy carrying the knot onto itself, but with its
direction reversed. The trefoil is clearly invertible: take the
diagram illustrated in Figure 2 and rotate it through half a
turn about an axis in the plane. In fact, every knot illus-
trated in Figure 2 is invertible, and it is not immediately
clear that there exists a knot which is not invertible. This
question was not resolved until 1964, when Trotter dis-
covered an infinite family of noninvertible knots, beginning
at nine crossings [Tro]. The situation with a low crossing
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number is not typical, however; inspection of Table Al in
Appendix I reveals that, overall, only a tiny proportion of
the knots up to 16 crossings are invertible. = -

It is obviously of fundamental importance to be able to
show that the knots listed in any purported table of prime
knots really are prime. It is also desirable to know which
knots are amphicheiral or invertible.” During the course of
several-decades, researchers devoted much effort to an-
swering these and other questions for knots tabulated in
the nineteenth century, but for over 50 years, almost noth-
ing was done to verify or extend the tables. The only ex-
ception to this was a compilation of 12- and 14-crossing
amphicheiral knots undertaken by Haseman in 1917 and
1918 [Hasl, Has2].

Activity picked up again in the 1960s, when Conway in-
vented a striking new notation for knots and links. This no-
tation, which uses some of Kirkman's ideas, enabled
Conway to enumerate all prime knots up to 11 crossings
and all links up to 10 crossings. Conway’s scheme was so
efficient that he claims to have completed this task, by
hand, in a “few hours”! Conway found 11 omissions and 1
duplication in Little's table of 11-crossing alternating knots,
but his own new table of 11-crossing nonalternating knots
had 4 omissions. Conway also overlooked the famous du-
plication in Little’s table of 10-crossing nonalternating
knots; this duplication was finally brought to light in 1974
by Perko, who showed that the two diagrams were related
by the move which bears his name (Fig. 8).2 This pair of
10-crossing nonalternating diagrams of the same knot have
different writhes and this is probably why the duplication
went undetected for so long. Indeed, Little had even pub-
lished a “proof” that the writhe of a minimal diagram was
a knot invariant, based on the mistaken assumption that
flypes and 2-passes sufficed to pass between any two min-
imal diagrams of the same knot.

In the late 1970s, Caudron [Cau] used an alternative ver-
sion of Conway’s notation to retabulate knots up to 11
crossings, discovering, in the process, the 4 omissions re-
ferred to above. Meanwhile, Bonahon and Siebemann,
noticing that Conway’s notational system reflected deep
structure properties of knots, proved a general classifica-
tion theorem for the family of so-called algebraic knots
[BS]. The great majority of knots through 11 crossings are
algebraic, although (as with all “nice” families) they are
soon overwhelmed by the nonalgebraic knots. In a tour de
force, Perko [Per 2, Per 3] computed enough invariants by
hand to distinguish the knots not covered by Bonahon and
Siebenmann’s result, thus finally completing the classifi-

cation through 11 crossings. These efforts mark the.end of-

the hand-caleulation era, as all subsequent tabulations have
been carried out by computer. ' '

In the early 1980s, Dowker and Thistlethwaite comput-
erized the tabulation process and extended the table to 13
crossings. Although Conway’s notation has been a major
conceptual irfluence in knot theory and is very compact

for knots of low crossing number, it does not lend itself
readily to computer programming, as it draws on a large
set of symbols assembled according to a rather large set
of rules, both of which grow with crossing number. Instead,
Dowker and Thistlethwaite used the refinement of Tait’s
notation already mentioned to.enumerate all possible dia-
grams. Flypes, 2-passes, and other moves (Fig. 3) were used
to group diagrams into equivalence classes which could
then be distinguished by topological invariants.

The table stood at 13 crossings for about a decade un-
til Hoste was recruited by local high-school students who
had just won access to a Cray supercomputer. Together,
they tabulated all alternating knots through 14 crossings
and provided the first check of Thistlethwaite’s list of al-
ternating knots [Arn]. At the same time, Thistlethwaite re-
turned to the tabulation problem and extended the table
even further. Most recently, Hoste and Weeks have col-
laborated to produce a table. Working in parallel with
Thistlethwaite, we have currently tabulated all prime knots
through 16 crossings and, as this article goes to press, have
begun the 17-crossing list.

Our Methodology

Both our tabulations, Hoste/Weeks's and Thistlethwaite’s,
begin by listing all prime alternating knots of a given cross-
ing number. We do this by generating all possible alter-
nating diagrams and then grouping them into flype equiv-
alence classes. We both use the same encoding scheme for
diagrams, namely the sequence of even integers already ex-
plained in Figure 1. We will refer to these sequences as DT
sequences (for Dowker and Thistlethwaite). Using the same
notation makes it easy for us to compare our results.

To reach our immediate goal, namely a list of all N-cross-
ing alternating knot types, we need to be aware of certain
features of the DT encoding scheme. Our first observation
is that the encoding of any particular diagram depends on
the choice of basepoint and direction. There are (2N)(2) =
4N such choices, and for highly asymmetric diagrams, these
choices can result in 4N different sequences. We need to
choose a distinguished member of the collection of se-
quences representing a given diagram; to this end, we de-
clare that the standard sequence for the diagram is the DT
sequence, which is minimal with respect to lexicographical
ordering, over all choices of basepoint and direction. Indeed,
we may go further and declare the standard sequence for a
knot type to be the minimal sequence over all diagrams of
minimal crossing number representing that knot type.

A second point to consider is that not every DT sequence
encodes a knot diagram. A moment’s reflection should
convince the reader that the objects really being encoded by
DT sequences are 4-valent graphs obtained by identifying
pairs of points on a circle, and, clearly, such a graph need
not be planar. Thus, it is not surprising that some DT se-
quences are not realizable. However, algorithms for decid-
ing the planarity of a graph are well known and it is a

7For hyperbolic knots, SnapPea easily settles all these questions.

8To his. credit, Conway had discovered more complicated instances of the Perko move among the 11-crossing knots:



simple matter to test a DT sequence for realizability.
Furthermore, Dowker and Thistlethwaite show that if a DT
sequence is coming from a prime diagram, then the diagram
is uniquely determined by the sequence, up to reflection and
isotopy of the extended plane [DT]. (A diagram is prime if
there is no circle in the plane cutting the diagram fransversely
in two points, with crossings lying on both sides; an exam-
ple of a diagram which is not prime is that of the connected
sum of the trefoil and the figure-eight given in Figure 4.)

As already stated, we are only interested in prime knots
and must, therefore, exclude DT sequences representing
composite knots. In general, deciding whether a given knot
is prime is a nontrivial matter, as the decomposing 2-sphere
of a composite ‘knot might not be immediately visible.
the case of alternating knots, there is a bean-

Tavbinat i
Fortunately, in the case of ting knots, tne:

tiful result of Menasco [Men] that can be broﬁght to bear.
The result states that a reduced alternating diagram repre-
sents a prime knot if and only if the diagram is itself prime;
informally, an alternating knot is prime if and only if “it looks
as if it is prime.”® Determining whether ‘a DT sequence rep-
* resents a prime diagram is straightforward: a diagram is com-
posite if and only if there is a proper subinterval of {1,2, ...,
N} such that each number in the subinterval is paired with
another number in the same subinterval (the subinterval con-
tains the points associated with crossings of one of the sum-
mands of the diagram). Note that if a diagram contains a nu-
gatory crossing, then it also fails to be prime; therefore, once
we have eliminated the composite diagrams, we no longer
have to worry about nonreduced diagramms.

Our strategy is now clear. We generate all possible DT
sequences of length N in lexicographic order and immedi-
ately discard those that are nonreliazable and those that
are nonprime. We also discard those sequences which are
not minimal over all choices of starting point and direc-
tion. After this filtering process, we are left with a list of
sequences representing the prime, N-crossing alternating
diagrams. These sequences are then sorted into equiva-
lence classes with respect to the operation of flyping; for
this step, it is necessary to write a procedure which detects
all possible flypes and implements them as transformations
of DT sequences. The final list of alternating knot types is
then obtained by recording the member of each equiva-
lence class which is lexicographically minimal. In practice,
of course, it is not necessary ever to have the complete
“taw” list of diagrams; one can reject diagrams that are not
minimal with respect to flyping, as they are generated.

The entire process is algorithmic and straightforward to
implement as computer code. Nonetheless, we should men-
tion that this is a nontrivial exercise in computer program-
ming, given that we wish the entire task to be completed in
a reasonable amount of time! Our runtimes for N = 16 are
presently of the order of 1-2 weeks, 0 and our own experi-

ence shows that careless programming can easily increase
this by one or two orders of magnitude. The trick is to rule
out whole sets of sequences whose first few entries already
guarantee eventual failure of one of the tests. For example,
we may ignore DT sequences that start with 2, as the cor-
responding diagram would have a nugatdry crossing labeled
{1, 2); Also, if a sequence begins with 4, primality of the as-
sociated diagram dictates that the numbers paired with 2
and 8 must differ by 1. Furthermore, any sequence of length
>3 which begins 4 6 2 ... cannot represent a prime dia-
gram, as there will be a trefoil summand. These examples
are quite simple, but hint at the possibilities.

After obtaining the list of all prime, alternating, unori-
ented knots with N crossings, we generate the nonalter-
nating knots with N crossings. Each N-crossing nonalter-
nating diagram can be obtained by switching crossings of
an N-crossing alternating diagram, so by switching cross-
ings in all possible ways in each N-crossing alternating di-
agram, we produce all possible N-crossing nonalternating
knot types. At first, it might appear that we need to use all
(reduced) alternating diagrams, but, in fact, we only need
to use one alternating diagram per alternating knot type.
For if D and E are two alternating diagrams related by fly-
pes and E' is a nonalternating diagram obtained by switch-
ing crossings of E, then E’ is related by flypes to a nonal-
ternating diagram D’ obtained by switching crossings of D.

To generate the nonalternating diagrams, we just insert
minus signs in all possible ways into the DT sequences that
represent the alternating knots. Because we are only inter-
ested in tabulating knots up to reflection, we may assume the
first entry of each sequence is positive. Thus, there are onN-i
sequences to consider for each alternating diagram. Most of
these nonalternating diagrams reduce to diagrams of fewer
crossings; again, with careful programming, we can avoid
ever considering the myriad sequences that immediately re-
duce to smaller diagrams by means of a single Type it
Reidemeister move (Fig. 3) or even a combination of two or
three Reidemeister moves. Still, many diagrams are left, and
a more careful sorting into knot types must be undertaken.

Before continuing with this discussion, we describe how
we have chosen to extend the lexicographical ordering of
unsigned DT sequences of length N to signed DT sequences
of length N, for, again, our ultimate aim is to settle on a
unique representative for each knot type. Our first con-
vention is that a DT sequence of positive numbers always
precedes a sequence containing one or more negative nur-
bers; this merely reflects the fact that we enumerate all al-
ternating diagrams before proceeding to the nonalternating

. diagrams. Now, suppose that we have two sequences s; and

S5, each with at least one negative term. Fori=1,2 let |SJ
be the sequence whose terms are the absolute values of those
of s;. If |sy| precedes |s| lexicographically, we declare that

9The reader can easily construct examples of (nonalternating) prime diagrams representing composite knots, and also examples of composite diagrams representing
prime knots; such examples iflustrate the essential difference between the two concepfs “prime knot” and “prime diagram” and highlight the significance of Menasco's

result.

10Egch increment of crossing number results (roughly) in a 10-fold increase in computer runtime. Our programs will accomplish Conway's enumeration up to 11 cross-

ings in about 9 s!

VOLUME 20, NUMBER 4, 1998 -39




$1 < 2. If, on the other hand, ls;| = |s3, we look at the first
position where s; and s have terms of opposite sign and de-
clare that s; < so if 51 has a negative term in that position.

It is at this point that our two methods of tabulation be-
gin to differ significantly, as Hoste and Thistlethwaite ap-
ply different types of moves to the nonalternating diagrams
in an effort to eliminate redundant diagrams. After being
left with nonalternating diagrams that do not obviously re-
duce to fewer crossings, Hoste considers all diagrams re-
lated to a given one by flypes and 2-passes and in every di-
agram in this class looks for any reduction to fewer
crossings given by an (¢, 7)-pass, where 7 >j (Fig. 3). If
none is found, the lexicographically smallest diagram in th
class is retained. What is left in the end is a superset of the
set. of all unoriented prime nonalternating knots with N
crossings, up to reflection. Even for N = 10, this superset
is too big: the famous Perko pair of diagrams mentioned
earlier still remains and the list contains 43 rather than 42
diagrams. For N = 16, the list has approximately 10% too
many diagrams. At this point, no further attempts are made
by Hoste to eliminate duplicates by means of Reidemeister
or other diagrammatic moves. Instead, the list is passed to
Weeks and his computer program SnapPea. We will return
in a moment to a discussion of how the final list of nonal-
ternating knots is found by SnapPea.

Thistlethwaite, on the other hand, applies more dia-
grammatic moves to each nonalternating diagram. In ad-
dition to the flypes and pass moves used by Hoste, he also
employs “double-pass” moves, the “Perko” move (Fig. 3),
and a few other esoteric moves designed specifically to
root out stubborn pairs of equivalent diagrams. These
moves preserve crossing number and, with just one ex-
ception, suffice to eliminate all duplicates through N = 13.
. After arriving at an initial superset of nonalternating knots,
Thistlethwaite then turns his attention to distinguishing as
many knots as possible. He first computes the Jones poly-
nomial, which places the knots in small equivalence classes,
each class consisting of all knots with a given Jones polyno-
mial. These equivalence classes are then attacked by invari-
ants based on representations of the knot group (Perko had
already used this type of invariant with notable success in
dealing with 11-crossing knots). In the case at hand, a few
thousand pairs and triples of knot diagrams still resolutely re-
fused to be distinguished, but, fortunately, it was shown that
the diagrams in each stubborn pair or triple were equivalent.
The method for this last step was to apply moves to increase
the number of crossings of the diagrams and then to apply
all the previous moves to these “expanded” diagrams.

-Returning to the superset of nonalternating diagrams
generated by Hoste, the next step is the application of
Weeks’s program SnapPea. There are over 1.7 million
knots in our table, but, amazingly, it turns out that all but
32 are hyperbolic and thus susceptible to the full weaponry
of hyperbolic geometry (an explanation of the term “hy-
perbolic” follows shortly). ‘Several ‘important theorems
now apply which lead, in the case of hyperbolic knots, to

a complete knot invariant. This invariant is then used, in
the case of the hyperbolic knots, to remove all duplicates
from Hoste’s list. The nonhyperbolic knots are so few in
number that they are easily dealt with separately.

The first important theorem, due to Gordon and Luecke,
is that two knots are equivalent if and only if their com-
plements are homeomorphic [GL]. The second, due to
Mostow and Prasad, states that if a knot complement ad-
mits a complete Riemannian metric of constant Gaussian
curvature —1, in other words the knot is kyperbolic, then
such a metric is unique [Pra]. Thus, two hyperbolic knots
are equivalent if and only if their complements are isomet-
ric. The final result we need is the existence of a canonical
triangulation of hyperbolic knot complements, shown to ex-
ist by Epstein and Penner {EP] and Sakuma and -Weeks
[Wks, SW]. The canonical decomposition is described in
Figure 6. It is a complete invariant for hyperbolic knots, as
two knot complements are isometric if and only if they have
the same canonical triangulation. Finally, it is important to
note that the canonical triangulation by ideal polyhedra can
be described entirely combinatorially, by designating which
faces of which polyhedra must be identified. Thus, once the
canonical decomposition has been found for each of the hy-
perbolic knots on the list of nonalternating knots, they can
be compared combinatorially. If two are alike, the knots are
the same and the redundant diagram can be dropped from
the list. If two are different, the two knots are different.

SnapPea takes as input Hoste’s list of nonalternating dia-
grams and attempts to find the canonical decomposition for
each. Through N = 16, the only nonhyperbolic knots are the
12 torus knots and 20 satellite knots listed at the end of this
section.!! For the rest, SnapPea succeeds in finding a hy-
perbolic structure, which it then uses to construct the canon-
ical decomposition. Although the basic data used to describe
the hyperbolic structure are algebraic numbers and may even-
tually be recorded as such by future versions of SnapPea,
they are presently rounded off and stored as floating-point
numbers. This has the undesired effect that roundoff error
may lead SnapPea to a decomposition which is not the canon-
ical one. To understand how this happens, recall the imagery
of Figure 6. If two adjacent triangular faces of the convex hull

" are found to be coplanar to an accuracy of, say, 10712, should

SnapPea treat them as distinct triangular faces, or should
they be combined to form a single quadrilateral face? If
SnapPea guesses wrong, it may give a false negative to the
question, “Are these two hyperbolic knots the same?”
Fortunately, false positives are impossible, because if two de-
compositions are equivalent, the- knots must be the same,
whether or not the decompositions are the canonical ones.
Therefore, the list of knots computed by this method is guar-
anteed to be complete, but it could, in principle, contain du-
plications. Comparison with Thistlethwaite’s results shows
rigorously that, in fact, no duplications are present, because
Thistlethwaite distinguishes knots by integer invariants.

We should point out that unlike the tabulation of the al-
ternating knots, our methods for nonalternating knots are

1A famous theorem of W. Thurston states that any nonhyperbolic knot is either a torus knot or a sateliite knot,




Figure 6. Given a fixed set of vertices, one may construct a canon-

ical triangulation of a sphere by taking the convex huli in Euclidean
3-space and radially projecting its edges back onto the sphere it-
self. A similar construction .in (3 + 1)-dimensional Minkowski space
[EP, Wks, SW] defines a canonical decomposition for a hyperbolic
knot complement.

not algorithmic. Instead, we simply employ a collection of
methods that work for N = 16.1

After producing the two tabulations, it is then a simple
matter to compare our results. Because we share the same
encoding scheme and the same choice of lexicographic or-
der, the two lists should be exactly the same. In practice, we
have compared our lists after completing the table for each
crossing number, Only for N = 14 did our results differ, and
then only by one of us having 4 omissions that the other did
not. A programming error was quickly found that accounted
for the discrepancy. For N = 15 and 16, our lists have agreed
on first comparison, a very satisfactory experience!

At this point, the reader might wonder how we can be
certain that all the knots in our tabulation are prime. This
is a nontrivial matter, but, fortunately, it is a fundamental
property of hyperbolic knots that they cannot be compos-
ite. Therefore, in finding their hyperbolic structures,
SnapPea has already established primality for all but 32 of
the knots.}® As mentioned earlier, each of the remaining
knots is a torus or satellite knot. A proof that torus knots
are prime may be found in a textbook on knot theory such
as [BZ]; the satellite knots all have structures which are
well known and documented (Fig. 9), and their primality
follows from a simple geometric argument.

Therefore, we have produced a table of all prime, un-
oriented knot types up to N crossings, without duplica-
tions. So far, we have ignored the issues of amphicheiral-
ity and invertibility, but these issues need to be addressed
if we wish to classify oriented knots up to isotopy. They
are best discussed in the context of knot symmetries.

The Symmetry Group of a Knot

Recall that in plane geometry, a symmetry of a regular poly-
gon of n sides is defined as a rigid motion (isometry) of the
plane which maps the polygon onto itself; for example, a
square may be mapped onto itself by any of four rotations
about its eenter, by a reflection about a diagonal of the
square, or by a reflection about a perpendicular bisector of
opposite sides of the square. These eight symmetries of a
square form a group under the operation of composition,
known as the dihedral group Dy More generally, a regular
n-sided polygon has 2n symmetries, of which n are rotations
and n are reflections, and these form the dihedral group D,
Informally, there are 2n distinet ways of picking up the poly-
gon and putting it back onto its original location. The 7 ro-
tations also form a group, called the cyclic group Z,.

In the theory of knots, symmetries are defined analo-
gously. We could merely consider a symmetrg of a’knot K
to be a homeomorphism of R3 which maps K to itself, or,
more succinctly, a homeomorphism of the pair of spaces
(R3 K). However, it is natural to regard two symmetries of K
as being equivalent if there is a continuously parametrized
family of symmetries a; (0 = ¢t = 1) such that one of the sym-
metries in question is ag and the other symmetry is a; (i.e,
ag can be “deformed” to «; through the family of symmetries
{ey)). Thus, it is customary to regard a symmetry of the knot
K as an equivalence class of homeomorphisms of (R3,K) with
regard to this equivalence relation. As in plane geometry, the
operation of composition induces a group structure on the
set of equivalence classes. We can think of a symmetry of K
as a way of transforming space so that the knot is mapped
onto itself; we just have to remember that two symmetries
are “the same” if one can be deformed to the other, as above.

We may classify knot symmetries into four types, de-
pending on whether the symimetry reverses the orientation
of 3 or reverses the orientation of K, according to Table 1.

In Figure 1, for example, if we perform a rotation through
half a turn about a west-east axis in the projection plane

Table 1. Classification of knot symmetries, S

Symmetry type Orientation of R® Orientation of K

0 Preserves Preserves
1 Preserves Reverses
2 Reverses Preserves
3 Reverses Reverses

120f course, the lack of an algorithm does not detract from the rigor of our approach. We merely run the risk of encountering a pair of knots so awkward that we will
not be.able to decide whether the knots are equivalent. To date, fortunately, this has not happened. In principle, there does exist an algorithm, due to Haken and
Hemion [Hak, Hem), for deciding whether or not two given knots are equivalent. However, to the best of our knowledge, this algorithm has not been implemented ex-

cept In a few isolated cases.

13Thistlethwaite has different techniques for demonstrating primality, but SnapPea’s method is much more efficient.
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Table 2. Classes of symmetry group. B -

Class  Symmetries contained in group  Symmetry type of knot
o] Type O symmetries only Chiral, noninvertible
i Type 0 and 1 symmetries only Chiral, invertible
+ Type 0 .and 2 symmetries only + Amphicheiral, noninvertible
- Type 0 and 3 symmetries only — Amphicheliral, noninvertible
a Type O, 1, 2, 3 symmetries Fully amphicheiral, invertible

passing through the center of the diagram, the knot is
mapped to itself with its orientation reversed; therefore, this
rotation is a symmetry of type 1. We can also achieve a sym-
metry of type 0 for this knot, by rotating through half a turn
about an axis normal to the projection plane.

We can now classify symmetry groups according to
which types of symimetry they contain. We observe that if
a symmetry group contains two of the three types 1, 2, and
3, then it must contain the third one as well: simply take
the product. Every symmetry group contains the identity,
which is of type 0. Therefore, there are exactly five classes
of symmetry groups, which we present in Table 2.

A handy feature of SnapPeq is that it is able to compute
the symmetry group of a hyperbolic knot and also the type
of each symmetry within the group. It accomplishes this by
finding all the ways of mapping the canonical triangulation
onto itself. An obvious question is the following: which groups
can be symmetry groups of knots? In the case of hyperbolic
knots, it turns out that the group has to be finite and; more-
over, has to be cyclic or dihedral [Ril, KS]. For nonhyperbolic
knots, the characterization of symmetry groups is slightly
more complicated.

It so happens that all knots with crossing number = 8
are either amphicheiral or invertible; however, the hordes
of “random” knots soon begin to take over, and as Table
A2A shows, at the level of 15 or 16 crossings almost all
knots are completely asymmetric. We round off this sec-
tion with a look at two 16-crossing exceptions to this trend
toward chaos: (i) the “most symmetric” hyperbolic knot in
the table, with symmetry group D¢ and (ii) the only hy-
perbolic knot in the table with symmetry group Dy (Fig. 7).
Although the diagram of the Djs knot in Figure 7 displays
its entire symmetry group in an obvious way, the diagram
of the Dg knot looks most unremarkable.

The fact that the symmetry group of the Dy knot is so vis-
ible is no coincidence; it is proved in [MT] that any symme-
try of a prime alternating link must be visible, up to flypes,
in any alternating diagram of the link.} Even if the alternat-
ing diagram admits nontrivial flypes, it is a relatively simple
matter to determine the symmetry group of the link by in-
spection of the diagram, although this procedure does require
a modest amount of practice. But the minimal diagram of the
Dy knot does not admit any nontrivial flype, so the symime-
tries of this knot must be immediately apparent, in the sense
that they correspond to symmetries of the diagram.

The symmetries of the Dy knot, by way of contrast, are
not remotely visible in the 16-crossing diagram of Figure

7~

Nl

The D¢ knot

[
5 R

\_\/

The Dy knot

Figure 7

7. However, one way of revealing the symmetries is to con-
struct the knot by cyclically pasting together nine identi-
cal pieces, as in Figure 8. Each piece, shown dark gray in
the picture, is a “bundle” of five arcs, and two adjacent
pieces differ by a “twist” of a third of a turn.

The Nonhyperbolic Knots
As already mentioned, there are 32 nonhyperbolic knots
with 16 or fewer crossings, of which 12 are torus knots and
the remaining 20 are satellites of the trefoil.

A torus knot is a simple closed curve sitting on a stan-

' dardly embedded torus. When we speak of a “(p,q)-torus

knot,” we mean a simple elosed curve on the torus which

- wraps around p times meridianally and g times longitudi-

nally. The integers p and q are necessarily relatively prime:
otherwise, we would have a torus link. In Figure 2, the sec-
ond knot in the first row is a (3, 2)-torus knot, the last knot

14A similar result was obtained by Bonahon and Siebenmann for “algebraic” links [BS].




Figure 8. A symmetric representation of the Do knot. It was rendered
using Larry Gritz’s Blue Moon Rendering Tools.

in the first row is a (5, 2)-torus knot, and the last knot in
the third row is a (7, 2)-torus knot. From this, the reader
can ‘easily produce analogous diagrams of (p, g)-torus
knots for other values of p and g and will observe that each
diagram thus constructed has p(g — 1) crossings. It is not
hard to show that for a given p and g, a (p, g)-torus knot
is isotopic to a (g, p)-torus knot and that torus knots are
classified up to unoriented equivalence by the unordered
pair of positive integers p and g. Henceforth, without fear
of ambiguity, we shall speak of the (p, g)-torus knot.

Because interchanging p and g does not alter the knot
type, it follows that the (p, ¢)-torus knot has two “natural”
diagrams, one with p(q — 1) crossings and the other with
q(p — 1) crossings. It is proved in [Wil, MP] that the cross-
ing number is the smaller of these two numbers. From this
result on crossing number and the fact that p and g must
be relatively prime, the values of (p, g) giving a torus knot
with 16 or fewer crossings are (3, 2), (5, 2), (7, 2), (9, 2),
(11, 2), (13, 2), (15, 2), (4, 3), (5, 3), (7, 3), (8, 3), and (5, 4).

It is well known {Sch] that torus knots are all chiral and
invertible and that each has symmetry group D;. Therefore,
our discussion of torus knots is complete, and we turn to
satellite knots. ]

If a knot K is placed inside a solid torus V, and V is itself
knotted in R3, then K is called a satellite knot (certain mild
restrictions must be imposed on the way in which Kis placed
in V, to avoid trivial cases). The core C of V (i.e., the knot
traveling around the center of V) is called a companion of
K,.and we say that K is a satellite of C. Figure 9 illustrates a
satellite knot!® of the trefoil (i.e., the knot is sitting inside a
solid torus which is a thickened trefoil).

Let us suppose that the 'companion knot has crossing
number k and that the satellite wraps (or ravels) m times
longitudinally around the solid torus; for example, in Figure
9, we have k = 3 and m = 2. There is an obvious diagram

of the satellite where at each crossing of the companion
we see an m X m “grid” of crossings of the satellite. Such
a diagram has at least km? crossings, and it is an unproven
“factoid” of knot theory that the satellite cannot be pro-
jected with fewer than km? crossings. '

Because the trefoil has 3 crossings, any satellite of it ap-
pearing in our table should have wrapping number 2 (a
higher wrapping number should entail at least 27 cross-
ings). Moreover, we should not expect any satellite of the
figure-eight knot to have fewer than (4)(2%) + 1 = 17 cross-
ings, where +1 refers to an additional crossing needed to
produce a knot rather than a link of two components. Our
table does not contain any counterexample to the conjec-
ture: the satellites through 16 crossings all wrap twice
around the trefoil, as in Figure 9.

Because the trefoil is chiral, it follows from a standard re-
sult -of knot theory that these 20 satellites are also chiral,
Moreover, it is not hard to see that they are all invertible: if
we rotate through half a tarn about a “north-south” axis in
the projection plane passing through the substituent tangle,
the tangle is flipped over and the rest of the satellite knot is
mapped onto itself with reversed orientation. But each of the
10 tangles is 2-bridged, and it is well known that 2-bridged
tangles are invariant (up to isotopy) under such a rotation.

The symmetry groups of the satellite knots were com-
puted: the four cable knots!® (i.e,, the knots with substitu-
tent tangles Yoo(, X<, X, xoxX) have symmetry groups
Ds, Ds, D7 and Dy, respectively, whereas each of the re-
maining 16 satellite knots has infinite dihedral symmetry
group. In general, the symmetry group of a satellite knot
need not be cyclic or dihedral.

N qo >
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Figure 9. Each satellite knot with =16 crossings is obtained by sub-
stituting one of these tangles, or its reflection, into the shaded disk.

(&
SN

18More precisely, it is a template: it becomes a knot when 1 of the 10 tangles in the box undemeath is substituted for the shaded. disk.
18 satellite knot K is a cable knot if it lies on the boundary of the companion solid torus V [BZ].
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Appendix I: Summary Data

" Table A1 : i
# Crossings # Knots # Torus # Sat. c + i a
0 1 1
3a 1 1 1
4a 1 1
Sa 2 1 2
6a 3 1
7a 7 1
8a 18 1 13 4
8n 3 1
a 41 1 2 39
on 8 8
10a 123 21 3] 89 7
100 42 1 6 36
11a 367 1 123 244
11n 185 64 121
12a 1,288 637 1 37 597 16
12n 888 466 <3 418 1
13a 4,878 1 3,261 1,617
138n 5,110 2 3,658 1,462
14a 19,636 15,229 5 183 4,084 35
14n ) 27,436 1 2 22,656 1 44 4,729 6
15a 85,263 1 74,223 11,040
15n 168,030 1 §] 152,357 1 15,672
16a 379,799 350,260 40 927 28,490 82
16n 1,008,908 1 10 958,189 25 434 50,227 31

" Table AZA. Distribution of symmetry groups of hyperbolic knots.

F4 Z2 2, D, D4 Ds p; Ps Dy P Dy Dye

# Crossings c c + + - i - i a i i a i i i §i.a i i a a

4a 1

Sa 1

6a 2 1

7a 4

8a 1 2 11 3 1

8n 1 1

9a 2 9 22 1 4 2

9n 4 1 2 1

10a 19 2 6 35 53 1 5 1

10n 5 1 26 9

11a 116 7 120 112 1

11n 57 7 97 22 2 1 10

12a 602 35 1 32 350 5 |. 242 1 2 13 1 2

12n 445 21 2 344 1 60 4 4 1 112

13a 3,154 107 1,080 511 21 2 2

13n 3,555 103 1,311 . 136 1 11

. 14a 14,851 378 | 4 1 ] 179 2,998 1,084 | 11 23 2 1

. 14n 22,326 330 1 42 4,356 358 | 4 4 6 21 2

15a 73,185 | 1,037 8,695 2,265 16 | 51 117 2 2

15n 151,126 | 1,281 1] 14,821 800 33 2 2 |5 2

16a 347,111 | 38,148 | 33 7 | 891 | 23725 | 36 | 4,754 | 25 2 3| 54 5 2 1 1

16n 954,381 | 3,808 | 21 4 | 423 | 48,224 ¢+ 11 | 1841 | 24 | 13 | 27 5 4 118511




Table A2B. Distribution of symietry grotips of satellite knots..

B3 Ds Dy Do
# Crossings i i i i i
13n 1 1
14n o ’ 2
15n 1 , 1 4
16n 10

Appendix Ii: Tables of Hyperbolic Knots with Selected Smeetries
For compactness, we have adopted the following alphabetic encoding of the DT notation.
a c d e f g h i j k 1 m n o P
2 8 10 12 14 16 18 20 22 24 26 28 30 32
A B C D E F G H 1 J K L M N (¢] P
~2 —~4 -6 -8 -10 =12 -14 —-16 -18 -20 —-22 —24 -26 —28 -30 -32
Knots with +amphicheiral symmetry
beifhakdlcgj 72 bgempkajnlfhdoic 72 cgmpnibltkoehfajd Z2 bdgaanMJLOIFpKe 72
bfjgiaeldncmhk 22 bgih]nkajcpmdofe 74 cgnmhidbkofepalj 72 beGNaJPD10FmiCHK 72
bgihkmjacnldfe Z4 bgimhjkaoefpcdin 72 chjmglinakpbeodfi Z4 begnaJdLPFIMHocK - Z2
cflnhkbjmegadi 72 bgimhjkaofepdcin 22 chlrioibmkpdfgaje 72 bfKHOJalnDPGCimE Z2
dfgljabkmnechi Z2 bhijkmpoanedficg 24 chmnoilbkpefgadj 72 bfLgjhadNeOCPIMK Z2
dfgljbakmnecih 72 bhjilknapcomegfd 74 chmonilbkpegfadj 72 bfhgKnaiclLoDpemj Z4
bdganhmcjloifpek 72 bhjilonagcpmekfd Z4 cl1fgibpmkdnoajhe Z2 bfh1gJadNPEOCIMK 72
bdganpmcjloifhek 72 cdganhmbkloifpej 72 clfoipbmkdngahje 72 bgIhkNajoPledFMC Z4
begnajpdlofmichk 72 cdganpmbkloifhej 72 dehnaojcimpfighk 72 bhEMGKCa01fnDjPI 22
belfiaojdhpmckgn 72 cegnahlibkmofipdj 72 fhkmjloanpcebdgi 74 bheMgkcaOLfNDIPI 72
bfglhkacmnepdoij 22 cegnhblakmofpjdi 72 bfhgllacKMDnde Z4 cEnoHBIDKmFGpjal Z2
bfgljapdmoecnihk 22 cfglhkbanoepdjim Z2 bdFJallmCEnPOkhG Z4 ceghNb1akMOPFJIDI 72
hbfhinjaicgpdkoem Z4 cfmjohlaknebgpdi Z2 bdGaNHMCj10iFPEK Z2 cegnabKbFOPHIJAM 72
bfkhjgaendpcoiml Z2 cgenpb]qkomfhjdi,zz bdGaNPMCj101FHEK 72 cehNgb1akMPfOJDI 12
bfkhojaindpgcime 72 cgfjipimkonbahde 72 bdGaNhCmJLoIfPKE Z2 ceoHnbIDKMGpFJal Z2
bfkohjaendgpciml Z2 cgflhkbaonepdjim 22 bdGanHCMJLoIFpke 72 - cfmoHIbDKNEGpadl 72
bflghjadneopcimk 72 cglnipbmkodfahje Z2 bdJFalLOCEnHPkmG Z4 cgnmHIbDKOFEpadl 22
bflhgjadnepocimk 72 cgmnhibdkoefpajl 72 bdgaNhcmJLOITPKE Z2 cnoHabMDKFGpIJel 72
Knots with Zs, Z4 symmetry
dfholikmebnacjg ¢ 23 bhijkmpoanedflcg + Z4 fhkmjloanpcebdgi + Z4 bfhgKnaicLoDpemj + Z4
bgihkmjacnidfe + Z4 bhjilknapcomegfd + Z4 bfhgllackMOnJe + Z4 bglhkNajoPledFMC + Z4
bfhinjaicgpdkoem + Z4 bhjilonagcpmekfd + Z4 bdFJaILmCENPOkhG + Z4
bgihinkajcpmdofe + Z4 chjmglnakpbeodfi + .24 bdJFaILOCENHPkmG + Z4
Knots with Ds symmetry
cemfhaikdingobj i beKFhadmdLCGI i bf1NhaDKeMGicd i defiLhmjkaCnolbg i
deflijcKabGH i beKGaHJDmFLCni i cEMfHATKDINGoBJ 1
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Knots with Dg symmetry
chgfbaied i bfgilaejchmdk i fijlmknocbaedhg i + -beGFhaCid 1 cihLKJnmbaEDogf. i
dfhgibace i fhijkimacbedg i fjimlkoncbaedhg i bdJFaIKCEHLG i eImKLjNcABoDhFG i
befgiahcjd i bghijkmacdlenf i gijklmnoabdcfeh i cFEhgJITkBAd i ehGkinmLaOdcBfJ i
eghijkbadcf i bghiklanjdemfe i bfhjngaelkcipodm i cJE1gBIdkFAh i beNGaHJDIFmpiOCk 1
bfghikacjdie i bfjhmgaockciendl i bhijkimoacdenfpg i ceFhGjIK1BaD a bfKh1al.oNGPEJCAM a
bfhgjalicked i bghiknafcidjoem i bhijkmnapcledogf i cEfjhkmd1gaBi i cENFhAJKMGoIpBY i
cfehgjilkbad a eimkljncabodhfg i chijkinobamedpgf i beiHLajNOgTMDKC i CGKhJINLAMOFBDPEL i
cjelgbidkfah a eimlkjncbaodhgf i cihjkonbamedpgf i chikLdmnbaEDogf i cfglijkPmnbaoedH i
Knots with D7 — Dyg symmetry

efglOkImCNpabhDj i D7 dkfmhojalcnepgbhi a D8 dKFmh0Ja1CNepGBi 1 D8 bgIHj1naCkdmeof i D10
cdefghab a D8 bfHGikaCjdle i D8 deigkNjPimaocFbH a D8 bhJIKMLnaCEDFog i D10
bfghjlaickdme i D8 bgIHJLKaCEDF i D8 dJilKnAcOMFpgBeH i D9 efghijkimnabcd a D14
fhijlkmbadceg i D8 bfHKNapICGLDJOEM i D8 defghijabc a D10 fghijklmnopabcde a 016

bghijinackdmeof i D8 bgihkNapjcledOFM i D8 dinglbjoemchafk i D10

gijkImnobadcfeh i D8 cEonhBIdKmGFPjal. i D8 gikjlnmobacedfh i D10

cnepgbidkfmhojal a D8 ; cNEpgBIdkFMhoJAl i D8 bghikmoajcldnepf i D10

Appendix Ili: Knotscape and SnapPea

Knotscape is primarily a graphical interface to the knot ta-
bles. It is currently still in the development phase, but it al-
ready allows the user to browse through the knot tables
and locate user-supplied knots in the tables. It will display
a picture of the knot currently selected and will compute
polynomial invariants and a few other invariants. The
graphical part of the program is written in Tcl7.4/Tk4.0, and
the computational modules are written in C. It has been
tested on Linux systems and on Sun systems. The program
is available for download from http:/www.math.utk.eduw/
~IMOorwerL.

SnapPea is an interactive computer program for cre-
ating and studying hypérbolic 3-manifolds. At present,
the most full-featured version runs on a Macintosh and
is available for free from www.geom.umn.edu. (For cur-
rent information about other platforms, please contact
weeks@geom.umn.edu.) SnapPea works with arbitrary
closed and cusped hyperbolic 3-manifolds. Initially, the
user specifies a manifold by drawing a knot or link and
asking SnapPea to construct its complement, or by se-
lecting a manifold from SnapPea’s built-in’ databases or
by some other method. Thereafter, the user can create
new manifolds from old ones by taking finite-sheeted
covers (or branched covers) by drilling out closed geo-
desics to create new cusps, or by doing Dehn fillings to
seal off old cusps. For all manifolds, SnapPea computes
a wide variety of numerical, algebraic, and graphical in-
variants.
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