Final Review

I. Probability

a. permutations and combinations
b. conditional probability
c. the addition rule
d. the multiplication rule
e. the subtraction rule
f. Bayes' theorem
II. Special Distributions: You should be familiar with the following special probability distributions and the relationships between these distributions.
a. Binomial Distribution
b. Normal Distribution $N\left(\mu, \sigma^{2}\right)$
c. Standard Normal Distribution $N(0,1)$
d. Chi-Square Distribution χ_{k}^{2}
e. Student t Distribution
f. F Distribution $F(n, m)$
g. Poisson Distribution
i. Exponential Distribution

III. Point Estimation

We normally use $\bar{X}=\frac{1}{n} \sum X_{i}$ as an estimator for the population mean μ and $s_{x}^{2}=\frac{1}{n-1} \sum\left(X_{i}-\bar{X}\right)^{2}$ as an estimator for the population variance σ_{x}^{2}.
III. Confidence Intervals: Be able to derive confidence intervals for the following cases. a. population mean when the true variance is known
use the fact that $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim N(0,1)$
b. population mean when the true variance is unknown
use the fact that $\frac{\bar{X}-\mu}{S_{x} / \sqrt{n}} \sim$ Student t with $n-1$ degrees of freedom
c. population variance
use the fact that $\frac{(n-1) s_{x}^{2}}{\sigma_{x}^{2}} \sim \chi_{n-1}^{2}$
d. population proportion
use the fact that $\hat{\pi} \sim N\left(\pi, \frac{\widehat{\pi}(1-\widehat{\pi})}{n}\right)$
IV. Hypothesis Testing: Be able to test hypotheses about the following a. population mean when the true variance is known
use the fact that $\frac{\bar{X}-\mu}{\sigma_{x} / \sqrt{n}} \sim N(0,1)$
b. population mean when the true variance is unknown
use the fact that $\frac{\bar{X}-\mu}{s_{x} / \sqrt{n}} \sim$ Student t with $n-1$ degrees of freedom
c. population variance
use the fact that $\frac{(n-1) s_{x}^{2}}{\sigma_{x}^{2}} \sim \chi_{n-1}^{2}$
d. population proportion
use the fact that that $\hat{\pi} \sim N\left(\pi, \frac{\widehat{\pi}(1-\widehat{\pi})}{n}\right)$
e. difference between two population means when their variances are known
use the fact that $\frac{(\bar{x}-\bar{Y})-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{\sigma_{x}^{2}}{n_{x}}+\frac{\sigma_{y}^{2}}{n_{y}}}} \sim N(0,1)$
f. difference between two population means when their variances are unknown but we can assume that the variances are the same.
use the fact that $\frac{(\bar{X}-\bar{Y})-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{s^{2}\left(\frac{n_{x}+n_{y}}{n_{x} n_{y}}\right)}} \sim$ Student t with $n_{x}+n_{y}-2$ degrees of freedom where $s^{2}=\frac{\left(n_{x}-1\right) s_{x}^{2}+\left(n_{y}-1\right) s_{y}^{2}}{n_{x}+n_{y}-2}$.
g. difference between two population means when their variances are unknown but our sample sizes are very, very large.

$$
\text { use the fact that } \frac{(\bar{x}-\bar{Y})-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{s_{x}^{2}}{n_{x}}+\frac{s_{y}^{2}}{n_{y}}}} \rightarrow N(0,1)
$$

h. difference between two population means when their variances are unknown and our sample sizes are small.
use the fact that $\frac{(\bar{X}-\bar{Y})-\left(\mu_{x}-\mu_{y}\right)}{\sqrt{\frac{s_{x}^{2}}{n_{x}}+\frac{s_{y}^{2}}{n_{y}}}} \rightarrow$ Student t distribution with the smaller of $\left(n_{x}-1\right)$ and
($n_{y}-1$) degrees of freedom (this is an approximation)
i. the equality of two population variances
use the fact that $\frac{s_{x}^{2} / \sigma_{x}^{2}}{s_{y}^{2} / \sigma_{y}^{2}} \sim F\left(n_{x}-1, n_{y}-1\right)$.
j. the equality of two population proportions
use the fact that $\hat{\pi}_{1}-\hat{\pi}_{2} \sim N\left(\pi_{1}-\pi_{2}, \frac{\pi_{1}\left(1-\pi_{1}\right)}{n_{1}}+\frac{\pi_{2}\left(1-\pi_{2}\right)}{n_{2}}\right)$
note that if $\pi_{1}=\pi_{2}$, then $\frac{\pi_{1}\left(1-\pi_{1}\right)}{n_{1}}+\frac{\pi_{2}\left(1-\pi_{2}\right)}{n_{2}}=\pi(1-\pi)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)$ and we use $\hat{\pi}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}$
V. Regression: Be able to do hypothesis testing with regression output

For simple hypotheses like $H_{0}: \beta_{2}=0$, use the fact that $\frac{b-\beta}{S E_{b}} \sim$ Student t distribution with $N-k$ degrees of freedom.

For hypotheses like $H_{0}: \beta_{2}=\beta_{3}=\cdots=\beta_{k}=0$, use the fact that $\frac{(T S S-R S S) / k-1}{R S S /(N-k)} \sim \mathrm{F}(k-1, N-k)$ where k is the number of parameters in the regression equation.

