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Abstract—Artificial intelligence (AI) systems do not exhibit 
human-like common sense. The principles and practices of 
experimental psychology – specifically, work on infant cognition – 
can be used to develop and test AIs, providing insight into the 
building blocks of common sense. Here, we describe how the 
evaluation team for DARPA’s Machine Common Sense program 
is applying conceptual content, experimental design techniques, 
and analysis tools used in the field of infant cognitive development 
to the field of AI evaluation.  
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I. INTRODUCTION 
Over the first years of life, children exhibit ‘common sense’ 

reasoning, looking for objects where they have seen them 
hidden, constructing towers out of blocks carefully balanced one 
atop another, and using information provided by others to solve 
problems. As any user of an artificial intelligence (AI) system 
knows, these ubiquitous programs can also do impressive things, 
such as recognizing and transcribing some spoken words, 
identifying the contents of some visual images, and predicting 
the words a user is likely to type next into their text message. 
However, most users also know that these AI systems often fail 
to exhibit human-like common sense, rendering them 
untrustworthy in critical situations and frustrating in daily use. 
In 2018, the U.S. Defense Advanced Research Projects Agency 
(DARPA) funded the Machine Common Sense, or MCS, 
program (https://www.darpa.mil/program/machine-common-
sense), initiated by David Gunning and subsequently led by 
Matthew Turek and Howard Shrobe, with the goal of 
establishing “the computing foundations needed to develop 
machine commonsense services to enable AI applications to 
understand new situations, monitor the reasonableness of their 
actions, communicate more effectively with people, and transfer 
learning to new domains” [1]. 

 One branch of the MCS program uses as its benchmarks the 
findings from human infants and toddlers. This work is devoted 
to simulating early-developing, nonverbal common sense—the 
kind exhibited by infants and toddlers. The approach driving this 
developmental emphasis has at its roots a theoretical stance that 
is quite old, if unfulfilled. In his seminal 1950 article on 

computing machinery and intelligence, Alan Turing wrote 
“Instead of trying to produce a programme to simulate the adult 
mind, why not rather try to produce one which simulates the 
child’s? If this were then subjected to an appropriate course of 
education one would obtain the adult brain” [2, p. 456].  

 In the MCS program, teams of engineers and developmental 
scientists are working together to fulfill Turing’s vision and 
create AIs with the nonlinguistic common sense of infants. 
Some of these teams—the so-called MCS performers—are 
building these AIs; other teams, including our own, are creating 
tools to evaluate how the AIs perform. Although the 
performances of AIs tested in our evaluations are of interest, this 
paper focuses not on the results of any evaluations or on the 
architectures or training regimens that produce those results, but 
on the designs and utility of the evaluation tools themselves. 

 Unfortunately, although good commonsense reasoning is 
required for the successful completion of a wide variety of tasks, 
AI researchers have made relatively little progress in this 
domain [3]. Davis and Marcus noted in 2015 that while some 
advances have been made in the areas of taxonomic reasoning, 
temporal reasoning, and qualitative reasoning, a number of 
obstacles have prevented improvement in general commonsense 
reasoning [3]. These obstacles include the fact that common 
sense frequently requires reasoning that is abductive rather than 
inductive or deductive, that many situations require a reasoner 
to make complex inferences about other individuals, and that 
even when a domain of competence is characterized by a 
relatively small collection of common examples, there is often a 
“long tail” of infrequent examples that are likely to confuse 
artificial—but not natural—agents [3]. As recently as 2019, 
Mitchell noted that several of these obstacles are still impeding 
progress on commonsense AI [4]. Finally, scholars have not 
reached agreement on what constitutes common sense. 
Nonetheless, one area of general agreement is that an AI system 
with common sense should be able to generalize previous 
competences to novel situations that rely on the same underlying 
ability, with little (if any) re-training. 

II. THE ROLE OF EVALUATION 
The field of developmental psychology has the potential to 

inform AI research in several ways. For example, researchers 
can try to program developmentally inspired learning 
capabilities into their AI systems [5, 6]. Likewise, Research supported by Machine Common Sense (MCS) HR001119S0005 from 

the Defense Advanced Research Project Agency. 



developmental psychologists can work to identify the ideal 
training data required to instill common sense in AI systems [7] 
or address theoretical questions about the origins of human 
cognitive phenotypes [8, 9]. In our work as developmental 
scientists involved with the MCS project, we have brought a 
different kind of contribution to the table: evaluation. 

Several AI theorists have explicitly discussed the importance 
of evaluation to the project of developing commonsense AI. 
When discussing ways to spur progress in the development of 
artificial common sense, Davis and Marcus noted “There may 
be no single perfect set of benchmark problems, but as yet there 
is essentially none at all, nor anything like an agreed-upon 
evaluation metric; benchmarks and evaluation marks would 
serve to move the field forward” [3, p. 102]. Hernández-Orallo 
devoted his 2017 book to the importance of developing ways to 
effectively evaluate natural and artificial intelligence [10], 
emphasizing that the field should focus on discrete and 
unconfounded abilities, and conceptualize with rigor the 
algorithmic information that dictates the difficulty of each task. 

Recently, some researchers have turned their attention to 
producing evaluation tools that will be of use to developers in 
the AI community who are working on the types of common 
sense found in nonverbal organisms. In 2020, Crosby et al. 
published “The Animal-AI Testbed and Competition,” an AI 
evaluation platform inspired by research on the commonsense 
cognition of nonhuman animals [11]. The following year, one of 
the MCS evaluation teams published the “Baby Intuitions 
Benchmark (BIB),” an AI evaluation tool motivated specifically 
by research on human infants [12]. In addition, Riochet et al. 
developed IntPhys 2019, a benchmark that evaluates whether 
AIs can reliably detect the plausibility of infant-psychology-
inspired physics scenes generated from a game engine [13]. 

Developmental scientists who regularly design assessments 
for infants and young children are well positioned to contribute 
to the effort to create evaluations of AI systems, evaluations 
based on infant abilities. As such, we have been building the 
Psychometric Intelligent Agent Graphical Environment and 
Testbed (PIAGET) in an effort to combine and extend previous 
benchmarks and to provide a more comprehensive set of tools 
for evaluating nonlinguistic common sense in artificial systems. 
The fabrication of these tools has been informed by theoretical, 
methodological, and basic scientific insights gleaned from 
developmental psychology, and more specifically from the 
study of infant cognition. 

III. THE PIAGET EVALUATION TOOLS 
We have developed evaluation tools based on classic 

experiments in developmental psychology that were designed to 
assess infants’ cognition and behavior. Several of our tests take 
advantage of the fact that many studies of infant cognitive 
development are non-motoric, requiring only the reliable 
measurement of the duration of visual fixations. Infants’ 
understanding of how objects behave in the real world can be 
inferred from increased fixation times, which are taken to signal 
a violation of expectation (VOE); when infants see an event that 
appears to violate how the world normally works, they look 
longer at that event than at expected events [14]. After being 
presented with video clips showing plausible or implausible 
events, AI systems can be programmed to respond with a VOE 

signal that allows for the assessment of the AI’s evaluation of 
the scene’s plausibility. In this way, AI systems can be presented 
with a large number of simplified video representations of 
events and tested on their ability to reliably tag an event as 
plausible or implausible (a method developed after that used by 
Riochet et al. [13]). 

However, our evaluations go beyond creating a set of 
plausible and implausible events. We have designed tasks that 
illuminate which aspects of a scene might render it challenging 
for an AI system to correctly identify the scene as plausible or 
implausible. Each task assesses distinct abilities that together 
give rise to the competence we are evaluating in that task. 
Accordingly, we have built a collection of tests that allows us to 
evaluate the presence or absence of specific abilities as drivers 
of overall performance on the task. Much like how 
developmental scientists manipulate specific variables when 
testing infants’ understanding or perception of an event, we vary 
features of scenes we present to AI systems in order to uncover 
the kinds of information that make common sense reasoning 
more or less difficult for the AIs. For example, when testing AIs’ 
competence at evaluating collisions, we use scenes in which two 
objects move in a single depth plane (and, therefore, can actually 
collide) or in two different, parallel depth planes (and therefore 
cannot collide). We also use scenes involving trained or 
untrained objects and scenes in which the collisions happen 
visibly or when occluded. These manipulations allow us to test 
for aspects of collision reasoning that interface, respectively, 
with low-level vision, generalization prowess, and enduring 
representations of aspects of the scene. This systematic design 
approach—imported from experimental developmental 
psychology—has rarely been used in the construction of AI 
benchmarks. Our approach yields factorial designs (represented 
as experimental “hypercubes”) that capture the contribution of 
distinct independent variables in tests of particular abilities and 
allows us to look at how these variables interact with each other 
to affect performance. 

We can rigorously examine patterns in the data by 
comparing design cells that are distinguished by just one 
variable, statistically controlling for factors irrelevant to that 
analysis. In this way, our approach draws on the strengths of 
psychologists who not only design these types of experiments 
but have extensive experience with hypothesis testing and the 
data analysis tools needed to draw inferences about genuine vs. 
spurious differences. Thus, rather than providing a general 
benchmark displayed on a leaderboard that reflects overall 
performance, we evaluate AIs relative to themselves, by 
introducing control trials that can reveal whether a deficit is due 
to a variable of interest in the question at hand. For example, in 
some trials there is very little action occurring in the scene. This 
permits measurement of a particular AI’s baseline rate of 
returning a “plausible” signal in the absence of significant 
activity, enabling comparisons with plausibility ratings on 
experimental trials and allowing us to statistically control for 
baseline plausibility responding. 

Another important component of our approach is that we did 
not generate a multitude of training scenes for the MCS 
performers (i.e., the teams of engineers and psychologists 
developing the AI systems). Infants who arrive at developmental 
psychology laboratories have a good deal of experience with the 



concepts being tested in those labs, but that experience has not 
been accrued in the testing environment. Instead, infants’ 
“training” happens as they encounter and explore the world at 
large. Psychologists who employ VOE methods can be 
confident that their experiments reflect infants’ generalization of 
their real-world experiences to the test. It is not currently 
possible to test AI systems in the kinds of novel environments 
in which infants are tested, so as a starting point we provided the 
performers with a scene generator they could use to give their 
AI systems experience in our simulated “environment;” we also 
gave the performers the code for a subset of plausible scene 
types. Although the teams could train their AIs using any data 
they chose, our scene generator allowed them to produce a 
limited number and type of scenes closely related to the scenes 
and environment used for evaluation. For example, the teams 
could only generate plausible scenes. In addition, they could not 
generate all types of object movement used at test or all object 
shapes and sizes. The scene generator therefore let the teams 
train their AIs on a subsample of the types of plausible scenes 
presented later, during the test trials. Teams had access to 
information about how the evaluations were guided by the 
developmental psychology literature and about the types of 
abilities we would be evaluating—for example, different aspects 
of movement, or representing what may happen to an occluded 
object—but they were not able to train their AIs on everything 
they might encounter in the testing environment. Although this 
makes our evaluation quite challenging, we feel it is an 
important step that will encourage programmers to overcome the 
central issue of lack of generalizability in AI systems, which 
interferes with commonsense reasoning in many contexts. 

 
Fig. 1. An example of the experimental hypercube design for the Object 
Permanence evaluation task. 

An example of the kind of hypercube design we use to 
evaluate AI systems—specifically, the hypercube design we use 
to evaluate how AI systems respond to object permanence 
violations—is pictured in Fig. 1. In this hypercube, we 
systematically manipulate three variables expected to impact 
object permanence reasoning. Along the x-axis, the novelty of 
the object in the scene is manipulated. One third of the test 
scenes include an object that was available for the AIs to train 

on in our scene generator, one third of the test scenes include an 
object of a novel (untrained) size but familiar (trained) shape, 
and one third of the test scenes include an object of a new shape. 
Along the y-axis, the nature of the object permanence violation 
is manipulated. Objects either undergo no violation of object 
permanence, disappear from an expected location, or appear in 
an unexpected location. Along the z-axis, the type of movement 
in the scene is systematically manipulated. An object is either 
tossed into the scene from offscreen, slid across the scene in a 
single depth plane, or slid across the scene while moving in 
depth closer to or farther from the point where the AI is viewing 
the scene. 

This hypercube design can disclose single cells where 
performance is especially strong or weak, and enables 
experimental control of variables that are irrelevant to the 
question at hand.  Further, it allows predictions as to where 
performance should be especially strong or weak, based on 
findings in both developmental psychology and the state of the 
art in AI engineering. For example, infants can apply their 
physical reasoning readily to objects they have never seen, along 
a variety of movement paths, but both of these variables—
generalization to unseen images and depth calculations—strain 
AI systems. Furthermore, adults are more likely to detect the 
spontaneous appearance of an object than they are to detect the 
spontaneous disappearance of an object [15], whereas infants are 
more likely to detect an object’s disappearance than appearance 
[16]. Including the appearance/disappearance variable in this 
design facilitates exploration of whether developmentally 
inspired AI systems produce signals that mimic distinct 
developmental stages of cognition. 

Using designs like this, we generate a series of video clips 
that constitute a single test set that manipulates only the 
variables of interest; everything else in the test set is held 
constant, such as the colors of the walls, the texture of the floor, 
and the size of any occluders present in the room (all of which 
we consider to be “surface features” of the scenes). Fifty 
different test sets are generated according to the specifications 
of the hypercube design, producing many different scenes of the 
same conceptual type (but differing surface features) that can 
collectively be used to evaluate how AI systems perform under 
the conditions specified by the independent variables. Such an 
approach provides unparalleled experimental control and 
mitigates concerns that any one non-critical variable (e.g., the 
texture of the floor) will drive performance. 

To date, we have developed eight evaluation tasks that 
follow the VOE format, each of which was designed to evaluate 
a particular ability related to a commonsense concept that has 
been demonstrated in infants. A list of the commonsense 
concepts to be evaluated in the MCS program can be found in 
Table 1 in the Appendix. By the time the program ends in 2024, 
we expect the evaluation arm of MCS to have produced 
approximately 40 distinct tasks using a variety of evaluation 
measures. These tasks are organized into three commonsense 
domains – reasoning about objects, agents, and places. Several 
of the tasks we have already designed evaluate concepts that 
bridge multiple domains. The evaluation measure described here 
(generating a VOE signal) is used primarily in the domain of 
object understanding; as detailed in the Future Directions 
section below, we are now moving toward an interactive reward 



learning method that continues to emphasize designs that assess 
componential abilities drawn from the infant cognition 
literature. Interested individuals can access additional 
information about the PIAGET evaluations, example video 
clips, and all of the PIAGET evaluation tools at 
https://www.machinecommonsense.com. These tools, which 
include all of the test scenes we have generated to date, are 
available to the public, and can be used by anyone in the AI 
community.   

IV. CASE STUDY: SPATIOTEMPORAL CONTINUITY 
In object commonsense reasoning tasks, we draw from 

classic work in infant psychology that illustrates infants’ 
understanding of how objects exist in the world and interact with 
other objects in the environment [14, 17, 18, 19]. By the age of 
12 months (and in some cases, even earlier), infants are sensitive 
to features of events such as the facts that objects move in depth, 
only change motion when contacted, do not occupy the same 
space as each other, persist when occluded, are subject to the 
forces of gravity, and have trajectories that can be anticipated 
along a spatiotemporal continuum [20, 21]. 

The PIAGET Spatiotemporal Continuity (STC) task 
examines whether the AI systems developed by the MCS 
performers can exhibit several of these abilities (e.g., anticipate 
trajectories and recognize the plausibility of movement in depth 
and the plausibility of persistence when occluded). This task 
evaluates if AI systems can detect violations of STC. Three 
types of movement are presented, in which an object (a) moves 
linearly across the screen in a single depth plane, or (b) moves 
linearly in a way that brings it closer or farther from the AI’s 
point of view as it proceeds across the screen, or (c) is tossed 
into the frame, tracing an arc prior to landing and then moving 
off the far edge of the screen. In half of the test trials (the 
plausible trials), the object moves without any violations of 
STC. In the other half of the test trials (the implausible trials), 
the object spontaneously disappears briefly mid-trajectory, 
reappearing a moment later where it would ordinarily be at that 
time point if spatiotemporal continuity was not violated. In 
addition, in half of the trials, these events transpire in a room 
containing no occluders, so the objects are always visible (with 
the exception of spontaneous disappearances during implausible 
trials). In the other half of the test trials, two occluders are 
present for the duration of the scene. In these trials, the occluders 
are initially lifted to reveal that nothing is behind them. After the 
occluders are lowered, an object moves across the screen. In 
plausible trials, the object moves behind the first occluder, 
reappears (as normal) between the two occluders, moves behind 
the second occluder, and finally emerges from behind the second 
occluder to move off screen. Implausible trials with occluders 
are identical to plausible trials with occluders, except that the 
object does not appear between the two occluders as it moves 
across the screen (see Fig. 2). Finally, in half of the trials, the 
moving object is one that the AI system has never encountered 
before, permitting evaluation of the extent to which an AI 
system can generalize the STC concept to untrained objects. 
Note that this particular design involves 4 independent variables, 
so it cannot be represented as a single cube in 3-dimensional 
space; hypercubes like this must be depicted using multiple 
cubes, as seen in Fig. 3, on the following page. 

The STC task uses an experimental 3 (Movement type) x 2 
(Plausible vs. Implausible) x 2 (Occluded vs. Unoccluded) x 2 
(Trained vs. Untrained Object) factorial design. Data analyses 
from the most recent evaluation of the MCS performers’ AIs 
indicate that on average, performance in plausible STC trials is 
better when objects are never occluded than when they are 
occasionally occluded (see Fig. 3). Likewise, on average, these 
AIs tend to exhibit better performance when objects move in a 
linear fashion than when they are tossed into the scene and move 
in an arc. This suggests that these AIs more readily processed 
action along the horizontal axis of a scene than movement along 
the vertical axis, in line with work on adult human visuospatial 
cognition [22]. Some of the evaluated AI systems generalize to 
novel objects better than other AI systems do. Although how and 
why the different AI systems produce better or worse 
performance is beyond the scope of this paper, queries about 
how the performers build and train their systems will likely yield 
inferences about what sorts of architectures or training regimens 
encourage flexible abstraction of concepts that can be 
generalized. Finally, all of the AIs we evaluated exhibited an 
implausibility bias; they were more likely to judge a plausible 
scene as implausible than an implausible scene as plausible. This 
is a pervasive finding in all of the evaluations of commonsense 
object understanding that we have done so far, indicating that 
current AI systems have a propensity to judge object behavior 
as implausible, which should be accounted for when developing 
and training these systems. Thus, the PIAGET evaluation tools 
have yielded data that (a) illuminate conditions in which 
individual AI systems perform well versus conditions in which 
these systems find the tasks especially challenging, and (b) 
reveal practical and theoretical findings that will be of interest 
to scientists who are studying cognition and development in both 
AIs and living organisms. 

 

 
Fig. 2. Sequences of screenshots illustrating plausible and implausible test trials 
designed to evaluate competence on the PIAGET Spatiotemporal Continuity 
task. This example shows an object (a hollow green cylinder) moving linearly 
across the screen in a single depth plane, in a room containing two occluders. 

 



Fig. 3. The Spatiotemporal Continuity hypercube design, colored to show a 
sample data pattern that helps to visualize an AI’s performance. Green shading 
indicates the AI correctly tagged the scene as plausible or implausible in 75% or 
more of the trials. Yellow shading indicates 50-75% correct tagging. Orange 
shading indicates 25-50% correct tagging. Red shading indicates 0-25% correct 
tagging. Note that strengths and weaknesses are immediately visible in these 
visualizations and can be followed up with statistical analyses to determine 
whether any apparent differences are statistically significant. In this example, the 
AI exhibits (a) excellent performance on implausible scenes (top row of cubes), 
and poorer performance on plausible scenes (bottom row of cubes), (b) worse 
performance for non-linear object movement (i.e., the red-shaded cells in the 
cube at the lower right), (c) better performance for trained (vs. untrained) objects 
that are not violating spatiotemporal continuity (i.e., more green on the left than 
right halves of the cubes in the bottom row), and (d) better performance on 
unoccluded scenes relative to scenes containing two occluders when the objects 
are not violating spatiotemporal continuity (i.e., more green on the bottom than 
top halves of the cubes in the bottom row). 

V. FUTURE DIRECTIONS 
The PIAGET evaluation tools described in this paper 

generate data patterns that allow the MCS performers to home 
in on the reasons their AI systems succeed or fail on specific 
commonsense tasks. These tools emphasize the need for AIs to 
possess broad and flexible concepts that can be applied in a 
variety of contexts. Furthermore, these tools enable testing of AI 
systems in a way that isolates the AIs’ strengths and weaknesses 
on individual components of the task. By requiring these 
systems to respond to visual displays in ways that are analogous 
to how human infants respond to such displays, these tests 
encourage programmers to develop AI systems that behave in a 
manner consistent with early developing human common sense. 

During the remainder of the MCS program, we will be 
designing additional tasks that do not rely on the generation of 
VOE signals and instead require AI systems to more actively 
engage with their environment. To this end, we have worked 
with the MCS evaluation engineering team to develop a scene 
generator called the Interactive Learning Environment (ILE), 
which allows AI systems to be trained in an environment that 
aligns with the one they will encounter in subsequent test trials. 
Rather than programming AI systems to simply generate VOE 
signals, PIAGET’s interactive tasks will require these systems 
to move around in a simulated environment to obtain a reward, 
a technique in line with the Animal AI Olympics evaluation 
developed by Crosby et al. [11]. The performers in the MCS 
program can train their models in any way they choose, and in 
some cases they provide their AIs with a great deal of 
background training. However, we will not be giving them 
training data; a single template scene will be provided that 
contains the key engineering elements for each task. The ILE 
allows performers to situate and train their AIs in our evaluation 
world by building scenes—“environments”—in which they can 

implement reward learning to obtain a target and learn about the 
experimental setting as they do so. Importantly, it also allows 
evaluators to hold out different types of objects, agents, or 
places, and use them in evaluation scenes to test whether the AIs 
have learned a generalized and adaptable concept (or a restricted 
and inflexible one). Like the other PIAGET evaluation tools, the 
ILE and relevant information about it is available to the public 
at https://www.machinecommonsense.com. 

Some of these interactive tasks will be two- or three-option 
forced-choice tasks; others will permit unconstrained movement 
on the part of the AI systems. In some cases, interactive tasks 
will be invented that assess the same competences assessed in 
the passive VOE tasks. For example, whereas our passive object 
permanence task requires AI systems to recognize a violation 
when an object seen moving behind an occluder is discovered to 
have disappeared, our interactive object permanence task 
requires AI systems to move to the side of a room that contains 
a reward that they have seen becoming occluded. In this 
interactive task, both sides of the room contain identical 
occluders, and the reward object is not visible when the AI 
system has the opportunity to start its movement. To succeed at 
this task, the system must (a) recognize that objects continue to 
exist when they are occluded, (b) remember where the object 
became occluded, and (c) move to the side of the room with the 
hidden object. Evaluating a given competence in both passive 
and interactive ways will encourage the development of AI 
systems that are useful in a wide variety of potential 
applications. This technique of employing two different 
measures that tap into the same commonsense concept also 
allows researchers to compare AI cognition to infant cognition 
with theoretical rigor. For some abilities, infants and toddlers 
show disparate patterns of performance for conceptually 
comparable passive and interactive tasks, with strong passive 
task performance suggesting mastery of a concept but weak 
motor-based task performance indicating a lack of 
understanding. For example, when asked to reach to the 
anticipated location of a falling object, two-year-olds fail to 
anticipate the effects of an obstacle that impedes the object’s 
movement, so they reach instead for the object in a location at 
the end of an unobstructed trajectory [23]. In contrast, VOE 
studies with infants suggest a reliable detection of violations of 
solidity as falling objects interact with impeding obstacles [24, 
25]. Using two different measures of the same commonsense 
competence will reveal whether the same developmental 
discordance occurs when AIs are programmed with 
developmental principles at their core. 

Ultimately, we believe it is of great value for AI researchers 
to work with developmental scientists to collaboratively build 
systems with commonsense reasoning capabilities. In addition 
to helping AI researchers understand how human beings develop 
their common sense as they mature from infancy into adulthood, 
developmental scientists are proficient at experimental design, 
stimulus creation, statistical analysis, and data interpretation, 
enabling the production of evaluation tools appropriate for 
assessing common sense behavior at two distinct levels. On one 
hand, these tools can allow for the examination of the 
component parts that contribute to a higher-order ability; on the 
other, they can facilitate the study of the broader abilities 
themselves. We sincerely hope, and expect, that the evaluation 



tools we are creating in the MCS program will ultimately be 
useful to the AI community’s efforts to make AI systems with 
genuine, flexible, and abstract common sense. 
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APPENDIX 
TABLE I.  LIST OF COMMONSENSE CONCEPTS EVALUATED 

Core 
Domain Commonsense Concept 

Objects 

Objects have depth >2D & move in 2.5D or 3D space 
Inanimate objects change motion when contacted and 
only when contacted 
Solid objects do not occupy the same space 

Objects persist, even when occluded 
Object functions can be predicted by their forms (e.g. 
certain affordances can be gleaned from the shape of 
an object) 
Solid objects are subject to the forces of gravity 
Sets of objects can contain more, or less, than other 
sets of objects 
Objects have trajectories that can be anticipated 

Agents 

Agents have preferences for object-based goals* 

Agents act efficiently* 
Agents affiliate with others who perform prosocial 
actions* 
Agents are preferred when they act prosocially, 
recognizing that agents' actions reflect intentions and 
beliefs informed by what they have observed* 
Agents share a set of common characteristics 

Agents only know what they have seen / experienced 
Agents can provide solutions to problems and convey 
knowledge 

Places 

One must continuously update one's own location in 
relation to features in the environment 
Landmarks can be used to navigate effectively 
One can navigate by encoding the geometry of the 
environment (distances/directions of stable surfaces) 
Objects can be located in space by a logical process 
of elimination 
Objects can be tracked over spatial displacement 
One can use the physics of an environment to obtain 
reward 
One should avoid places in an environment that are 
dangerous 

* Indicates a concept tested by other members of the MCS evaluation team 
 


