Intelligent CS 5?

Hw11 due Monday @ 11:59pm

- X to move.

Is there a way to ensure a win?

If so, how far ahead?

Connect $4 \mathrm{AI} \sim$ how could it work?

$\|X\| X \mid$						
\|X	O		\|O		x	
\|O	O		O\|X	O	O	
\|X	X		O\|O	X	X	
\|O	O		\| $\mathrm{X}\|\mathrm{O}\| \mathrm{O}\|\mathrm{X}\|$			
$\|O\| X \mid$	\| $\mathrm{X}\|\mathrm{O}\| \mathrm{X}\|\mathrm{O}\|$					
01	3456					

Who won?!

It could just play randomly... Let's try!
Or, it could always play as far left as possible... Let's try that, too!

C4 AI ~ how could it work?

while True:

$\|X\| X \mid$
$\|X\| O \mid$
$\|O\| O\|X\| O\|X\| O\|O\|$
$\|X\| X\|X\| O\|O\| X\|X\|$
$\|O\| O\|O\| X\|O\| O\|X\|$
$\|O\| X\|X\| X\|O\| X\|O\|$
--1

```
col = -1
    while b.allowsMove(col) == False:
    col = random.choice(range(7))
b.addMove(ox, col)
if ox == 'O': OX = 'X'
else: ox = 'O'
# check if game is over!
```

Who won?!
It could just play randomly... Let's try!
Or, it could always play as far left as possible... Let's try that, too!

C4 AI ~ how could it work?

tiebreaking to the LEFT when possible...

It could just play randomly... Let's try!

C4 AI ~ how should it work?

It should (1) win and (2) block wins, if possible.
Otherwise it should just play as well as it can... ?!

C4 AI ~ how should it work?

Human-style game AI:
"intuitive" evaluation of how good/bad a board is

Otherwise it should just play as well as it can... ?!

C4 AI ~ "intuitive" moves?

If there isn't a win or loss... where should you go? Why?

C4 AI ~ lookahead moves...

I feel ahead of the game here...

Both we - and machines can look ahead much further than this!
$\begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
It should (1) win and (2) block wins, when it can.
Otherwise it should just play as well as it can... ?!

Deep Blue (chess computer)

From Wikipedia, the free encyclopedia

Deep Blue was a chess-playing computer developed by IBM. On May 11, 1997, the machine, with human intervention between games, won the second six-game match against world champion Garry Kasparov by two wins to one with three draws. ${ }^{[1]}$ Kasparov accused IBM of cheating and demanded a rematch, but IBM refused and dismantled Deep Blue. ${ }^{[2]}$ Kasparov had beaten a previous version of Deep Blue in 1996.

Contents [hide]
1 Origins
2 Deep Blue versus Kasparov
3 Aftermath
4 See also
5 Notes
6 References
7 Further reading
8 External links

Origins

Deep Blue (chess computer)

From Wikipedia, the free encyclopedia
Deep Blue was a chess-playing computer developed by IBM. On May 11, 1997, the machine, with human intervention between games, won the second six-game match against world champion Garry Kasparov by two wins to one with three draws. ${ }^{[1]}$ Kasparov accused IBM of cheating and demanded a rematch, but IBM refused and

Deep Blue, with its capability o evaluating 200 million positions per second, was the fastest computer to face a world chess champion. Today, in computer chess research and matches of world class players against computers, the focus of play has often shifted to software chess programs, rather than using dedicated chess hardware. Modern chess programs like Houdini, Rybka, Deep Fritz or Deep Junior are more efficient than the programs during Deep Blue's era. In a November 2006 match between Deep Fritz and world chess champion Vladimir Kramnik, the program ran on a computer system containing a dual-core Intel Xeon 5160 CPU , capable of evaluating only 8 million positions per second, but searching to an average depth of 17 to 18 plies the middlegame thanks to heuristics; it won 4-2. ${ }^{[26][27]}$

One of the cultural impacts of Deep Blue was the creation of a new game called Arimaa designed to be much more difficult for computers than chess. ${ }^{[22]}$

Origins

Deep Blue (chess computer)

From Wikipedia, the free encyclopedia

Deep Blue was a chess-playing computer developed by IBM. On May 11, 1997, the machine,

Arimaa - Intuitively simple ... intellectually challenging
arimaa.com/
GAMES Magazine: 2011 Best Abstract Strategy Game. This deep and groundbreaking game is not new but we praise Z-Man for launching a thematic set to

Arimaa Game Rules

arimaa.com/arimaa/learn/rulesIntro.html v
Arimaa is designed so that it can easily be played using a standard chess set. To make the game easier to learn for someone who is not familiar with chess, the

Arimaa - Wikipedia

https://en. wikipedia.org/wiki/Arimaa •
Arimaa /e'ri:me/ (About this sound listen) is a two-player strategy board game that was designed to be playable with a standard chess set and difficult for
Rules - Movement Annual tournaments Arimaa Challenge

Arimaa | Board Game | BoardGameGeek
https://boardgamegeek.com/boardgame/4616/arimaa
Arimaa, pronounced "a-ree-muh," is a game where stronger animals like elephants and camels freeze, push, and pull the weaker ones from the opposing team

Arimaa Free Strategy Game Software - Smart Games
www.smart-aames com/arimaa html v

Arimaa
Game
world chess
of play has
Arimaa is a two-player strategy board game that was designed to be playable with a standard chess set and difficult for computers while still being easy to learn and fun to play for humans. Wikipedia

Publisher: Z-Man Games
Designer(s): Omar Syed and Aamir Syed
Players: 2
Skill(s) required: Strategy, tactics
Genres: Board game, Abstract strategy game

One of the cultural impacts of Deep Blue was the creation of a new game called Arimaa designed to be much more difficult for computers than chess. ${ }^{[22]}$

Origins

Plies ~ "turns to checkmate"

How many moves ahead might we have to look?

Plying our intuitions...

In all 4 of these boards, \mathbf{X} will move to col 3 , even if both players tiebreak to the LEFT

Find + circle the reason why 'X' moves to col. \#3 for each... Name(s)

Challenge: What will happen if you run X at 1 ply and O at 1 ply, each tiebreaking LEFT?

Challenge: What about 2-ply each?

Plying our intuitions...

In all 4 of these boards, \mathbf{X} will move to col 3 , even if both players tiebreak to the LEFT

Find + circle the reason why ' X ' moves to col. \#3 for each...
Try this on the back page first...

Challenge: What will happen if you run X at 1 ply and 0 at 1 ply, each tiebreaking LEFT?

Challenge: What about 2-ply each?

After Deep Blue...

You lose, man. World chess champion falls to super computer

Boston Herald - Monday, May 12, 1997
Author: Bill Hutchinson
Watch out humans, the world will never be the same.
IBM's super-calculating computer Deep Blue made a statement for oppressed machines everywhere when it thundered to victory over mankind's greatest chess player, Garry Kasparov.

Deep Blue? Heck, call it Mr. Blue from now on.
In the New York City chess duel of Man vs. Machine, Deep Blue puzzled its human counterpart to a blood-boiling breakdown.
"I have to apologize for today's performance," the 34-year-old Russian Kasparov said after suffering the first chess defeat of his professional career. "I had no real energy to fight."

Deep Blue scored its $31 / 2$ point to $21 / 2$ point triumph in an astonishing 88 -minutes. Kasparov shocked the chess world by resigning after only 19 moves with the black pieces.

Why 22-Year-Old Magnus Carlsen Is the New King of Chess

ESSAY

But, in practice...

In Norway, Chess Broadcast Spurs NFL-LikeFan Frenzy

THE WALL STREET JOURNAL.

Chess-Championship Results Show Powerful Role of Computers
The digital revolution has pushed human abilities to new heights

Computers have gone so far that the top human players are now those who most often play the moves that would be chosen by the best engines (which sport names like Houdini, HIARCS and Rybka). Magnus Carlsen's biographers dub him the "hero of the computer era." Indeed, a study published on ChessBase.com earlier this year showed that in the tournament Mr. Carlsen won to qualify for the world championship match, he played more like a computer than any of his opponents.

Humans adapt!

still popular!

ray, Chess Broadcast Spurs zeFan Frenzy

TJJOURNAL.

onship Results Show Powerful Role of
as pushed human abilities to new heights
he play with us. Sundays $2 \vee 5$. Pearsons 102

킄
 CLAREMONF~ CHESS CLU .

man players are now those who most often : best engines (which sport names like sen's biographers dub him the "hero of the n ChessBase.com earlier this year showed ıalify for the world championship match, he opponents.

Humans adapt!

Connect 4, Part $\mathbf{2}$

1 ply +2 ply

intuition-based tiebreaking

```
aiMove( self, ox )
```

b.aiMove('O')
b.aiMove('X')

The Player class

What data does a computer AI player need?

ox? tbt? ply?
... perhaps surprisingly, not so much.

Looking further ahead...!

How could we write a 3-ply lookahead?
What about 4-ply? N-ply?

How many ply of lookahead would we need to play a perfect game of Connect Four?

Player's algorithms...

Board

__init__(self, width, height)
allowsMove(self, col)
addMove(self, col, ox)
delMove(self, col)
__repr__(self)
isFull(self)
winsFor(self, ox)
hostGame(self)
playGame(self, pForX, pForO)

Why AI is challenging:
Make no mistake about it: computers process numbers not symbols.

Computers can only help us to the extent that we can arithmetize an activity.

scoreBoard (self,b)

Returns a score for any board, b

A simple system:	100.0 for a win	50.0 for anything else	0.0 for a loss

Score for \bullet
Score for 1 (1)

Score for \bullet
Score for 10

scoresFor at 0 ply...

0-ply scores for (II)

What should scoresFor return for (1) with ply $=\mathbf{=} \mathbf{0}$

0 ply is a Zen-like approach: exist only in the present

O-ply means 0 moves are made!

scoresFor at 1 ply...

1-ply scores for $\mathbb{I D}$

What should scoresFor return for $(\mathbb{1}$ with ply $=\mathbf{=} \mathbf{1}$

A 1-ply lookahead player will "see" an impending victory.

"Gotcha!"

scoresFor at 2 ply for

What should scoresFor return for $\mathbf{~}$ with ply == $\mathbf{2}$

> A 2-ply lookahead player will see a way to win or block the opponent's win
> "Gotcha!" + "Uh Oh ..."

2-ply scores for

scoresFor at 2 ply for \mathbb{D}

What should scoresFor return for \mathbb{C} with ply == $\mathbf{2}$

A 2-ply lookahead player will see a way to win or block the opponent's win
"Gotcha!" + "Uh Oh ..."
2-ply scores for $\mathbb{I D}$

Fill in the list of scores returned by scoresFor
The same move is evaluated at
each ply... it's just evaluated
farther into the future!

Fill in the list of scores returned by scoresFor

The same move is evaluated at each ply... it's just evaluated farther into the future!

scoresFor (b)
ox == 'O' and ply == 3

Fill in the list of scores returned by scoresFor
The same move is evaluated at
each ply... it's just evaluated
farther into the future!

Idea: scoresFor

Idea: scoresFor

(self) ' X^{\prime}
new 'X'

Strategic thinking == intelligence

Two-player games have been a key focus of AI as long as computers have been around...

> In 1945, Alan Turing predicted that computers would be better chess players than people in \sim 50 years...
> and thus would have achieved intelligence.

Strategic thinking != intelligence

computers

good at looking to find winning combinations
of moves

humans
good at evaluating the strength of a board for a player
... humans and computers have different relative strengths in these games.

Humans play via "look-up table"

An experiment (by A. deGroot) was performed in which chess positions were shown to novice and expert players for a few seconds...

- experts could reconstruct these perfectly
- novice players did far worse...

Humans play via "look-up"

An experiment (by A. deGroot) was performed in which chess positions were shown to novice and expert players for a few seconds...

- experts could reconstruct these perfectly
- novice players did far worse...

Random chess positions (not legal ones) were then shown to the two groups

- experts and novices did equally badly at reconstructing them!

Connecting Connect Four ...

Connect 4

How complex are these games?
Least? Most?
... to other strategy games.

Connecting Connect Four ...

Connect 4

chess

How complex are these games?
Least? Most?
... to other strategy games.

Games' Branching Factors

On average, Connect 4 players have seven choices per move. Chess players have more, perhaps around 40, possible choices in a given move.

Boundaries for qualitatively different games...

Branching Factors

 for different two-player gamesTic-tac-toe4
"solved" games

Connect Four 7

	Checkers10	
computer-dominated	Reversi	30
	Chess	40
human-dominated	Go	300
	Arimaa	17,000

Games' Branching Factors

On average, Connect 4 players have seven choices per move. Chess players have more, perhaps around 40, possible choices in a given move.

"solved" games

Branching Factors
for different two-player games
Branching Factors
for different two-player games
Tic-tac-toe
4
Connect Four
Connect Four 7 different games...

draw/tie with perfect play

A Knowledge-based Approach of Connect-Four

The Game is Solved: White Wins

Victor Allis

Department of Mathematics and Computer Science Vrije Universiteit

Amsterdam, The Netherlands
Masters Thesis, October $1988 \dagger$
first-player loses (with perfect play)

first-player wins
(with perfect play)

Connect 4 was solved in 1988.

Science 14 September 2007:
Vol. 317. no. 5844, pp. 1518-1522
DOI: $10.1126 /$ science. 1144079

RESEARCH ARTICLES

Checkers Is Solved

Jonathan Schaeffer," Neil Burch, Yngvi Björnsson, ${ }^{\dagger}$ Akihiro Kishimoto, ${ }^{\ddagger}$ Martin Müller, Robert Lake, Paul Lu, Steve Sutphen

The game of checkers has roughly 500 billion billion possible positions (5×10^{20}). The task of solving the game, determining the final result in a game with no mistakes made by either player, is daunting. Since 1989, almost continuously, dozens of computers have been working on solving checkers, applying state-of-the-art artificial intelligence techniques to the proving process. This paper announces that checkers is now solved: Perfect play by both sides leads to a draw. This is the most challenging popular game to be solved to date, roughly one million times as complex as Connect Four. Artificial intelligence technology has been used to generate strong heuristic-based game-playing programs, such as Deep Blue for chess. Solving a game takes this to the next level by replacing the heuristics with perfection.

Checkers was solved in 2007.

Games' complexity ~ xkcd

~2012

SOLVED carvuite can PLAY PERFECTLY	saved for All PossilasPosmions		DIFFICULTY of VARIOUS GAMES FOR COMPUTERS
			(Games' Branching
	SOVED FOR SARRING POSTINS	$\begin{aligned} & \text { GOMONOU } \\ & \text { CHECKERS (2007) } \end{aligned}$	
COMPUTE BEAT TOP	CS CAN HUMANS		

Mastering the game of Go without human

David Silver , Julian Schrittwieser, Karen Simonyan, loannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel \& Demis Hassabis

Nature 550, 354-359 (19 October 2017)
doi:10.1038/nature24270
Download Citation
008

Received: 07 April 2017

Accepted: 13 September 2017 Published online: 18 October 2017

LUI TVICIG
MAY NEVE
OUTAY HI
How Google's AlphaGo Beat a Go World Champion

CARVINBAL

HARD

VARIOUS GAMES FOR COMPUTERS

> DIFFICULTY of VARIOUS GAMES FOR COMPUTERS

