
Intelligent		CS	5	?

				X	to	move.	

Is	there	a	way	to	
ensure	a	win?	

If	so,		how	far	
ahead?	

			X			
	X		X	O		
X	O	O	O	X	O	

 0 1 2 3 4 5 6b.playGame('human',	o0rn),		x3rn	vs.	'human'

Hw11	due	Monday		@	11:59pm

Connect	4	AI	~	how	could	it	work?

It	could	just	play	randomly...			Let's	try!

X	X					
X	O			O		X
O	O	X	O	X	O	O
X	X	X	O	O	X	X
O	O	O	X	O	O	X
O	X	X	X	O	X	O

 0 1 2 3 4 5 6

Who	won?!

Or,	it	could	always	play	as	far	left	as	possible...				Let's	try	that,	too!

Oh,	I	won!

C4	AI	~	how	could	it	work?

It	could	just	play	randomly...			Let's	try!

X	X					
X	O			O		X
O	O	X	O	X	O	O
X	X	X	O	O	X	X
O	O	O	X	O	O	X
O	X	X	X	O	X	O

 0 1 2 3 4 5 6

Who	won?!

Or,	it	could	always	play	as	far	left	as	possible...				Let's	try	that,	too!

Oh,	I	won!

col	=	-1	
while	b.allowsMove(col)	==	False:	
				col	=	random.choice(range(7))	

b.addMove(ox,	col)	

if	ox	==	'O':			ox	=	'X'	
else:											ox	=	'O'	

#	check	if	game	is	over!

while	True:

C4	AI	~	how	could	it	work?

It	could	just	play	randomly...			Let's	try!

X	X					
X	O			O		X
O	O	X	O	X	O	O
X	X	X	O	O	X	X
O	O	O	X	O	O	X
O	X	X	X	O	X	O

 0 1 2 3 4 5 6

tiebreaking	to	the	LEFT	
when	possible...

Or,	it	could	always	play	as	far	left	as	possible...				Let's	try	that,	too!

Oh,	I	won!

O	O	O				
X	X	X				
O	O	O				
X	X	X				
O	O	O				
X	X	X	X			

 0 1 2 3 4 5 6

			X			
	X		X			
X	O	O	O		O	

 0 1 2 3 4 5 6

I	feel	ahead	
of	the	game	
here...

It	should	(1)	win	and	(2)	block	wins,	if	possible.	

C4	AI	~	how	should	it	work?

Otherwise	it	should	just	play	as	well	as	it	can...	?!

			X			
	X		X			
X	O	O	O		O	

 0 1 2 3 4 5 6

I	feel	ahead	
of	the	game	
here...

It	should	(1)	win	and	(2)	block	wins,	if	possible.	

C4	AI	~	how	should	it	work?

Otherwise	it	should	just	play	as	well	as	it	can...	?!

Machine-style	game	AI:	
looking	ahead	as	far	as	

possible

Human-style	game	AI:	
"intuitive"	evaluation	of	
how	good/bad	a	board	is

C4	AI	~	"intuitive"	moves?

			O			
	O		X		X	
X	O	O	X	X	O	

 0 1 2 3 4 5 6

If	there	isn't	a	win	or	loss...	where	should	you	go?		Why?

			X			
	X		X			
X	O	O	O		O	

 0 1 2 3 4 5 6

I	feel	ahead	
of	the	game	
here...

It	should	(1)	win	and	(2)	block	wins,	when	it	can.	

C4	AI	~	lookahead	moves...

Otherwise	it	should	just	play	as	well	as	it	can...	?!

Both	we	–	and	machines	–	
can	look	ahead	much	
further	than	this!

Plies	~	"turns	to	checkmate"			(for	any	game)

			X			
	X		X	O		
X	O	O	O	X	O	

 0 1 2 3 4 5 6

How many moves ahead might we have to look?

b0

x5.scoresFor(b0)

Challenge:			What	
about	2-ply	each?

Plying	our	intuitions…

Challenge:			What	
will	happen	if	you	run	
X	at	1	ply	and				O	at	

1	ply,		each	
tiebreaking	LEFT?	

O						
X	O	X	O			
O	X	O	O			
X	X	O	X			

 0 1 2 3 4 5 6

O	X					
X	X					
O	O	O				
X	O	X	O			

 0 1 2 3 4 5 6

O	O					
X	X					
O	O					
X	X					
O	O					
X	X					

 0 1 2 3 4 5 6

ply == 1 ply == 2

Find	+	circle	the	reason	why	'X'	moves	to	col.	#3	for	each...

bDbA

O	O	O				
X	X	X				
O	O	O				
X	X	X				
O	O	O				
X	X	X	X			

 0 1 2 3 4 5 6

X:		ply	==	0,	
O:		ply	==	0,	
both:			tbt	==	'LEFT'

Example

X	O	O				
X	X	X				
O	X	O				
O	X	X				
O	O	O				
X	X	O				

 0 1 2 3 4 5 6

ply == 0

bC
X	O					
O	X					
O	O					
X	X					

 0 1 2 3 4 5 6

ply == 3

bB

In	all	4	of	these	boards,	X	will	move	to	col	3,	
even	if	both	players	tiebreak	to	the	LEFT	

b.playGame(x0, o0)

Name(s)				_______________

Challenge:			What	
about	2-ply	each?

Plying	our	intuitions…

Challenge:			What	
will	happen	if	you	run	
X	at	1	ply	and				O	at	

1	ply,		each	
tiebreaking	LEFT?	

O			X			
X	O	X	O			
O	X	O	O			
X	X	O	X			

 0 1 2 3 4 5 6

O	X					
X	X					
O	O	O	X			
X	O	X	O			

 0 1 2 3 4 5 6

O	O					
X	X					
O	O					
X	X					
O	O					
X	X					

 0 1 2 3 4 5 6

ply == 1 ply == 2

Find	+	circle	the	reason	why	'X'	moves	to	col.	#3	for	each...

bDbA

O	O	O				
X	X	X				
O	O	O				
X	X	X				
O	O	O				
X	X	X	X			

 0 1 2 3 4 5 6

X:		ply	==	0,	
O:		ply	==	0,	
both:			tbt	==	'LEFT'

Example

X	O	O				
X	X	X				
O	X	O				
O	X	X				
O	O	O				
X	X	O				

 0 1 2 3 4 5 6

ply == 0

bC
X	O					
O	X					
O	O					
X	X					

 0 1 2 3 4 5 6

ply == 3

bB

In	all	4	of	these	boards,	X	will	move	to	col	3,	
even	if	both	players	tiebreak	to	the	LEFT	

b.playGame(x0, o0)

No	look
ahead!

Let's	tr
y	it!!

Try	this	on	th
e	back	page	f

irst...

After	Deep	Blue…

But,	in	practice...	

Humans	
adapt!

still	popular!

Humans	
adapt!

Connect	4,	Part	2 hw11pr2.py

colsToWin(self,	ox)

aiMove(self,	ox)

hostGame(self)

			X			
	X		X			
X	O	O	O		O	

 0 1 2 3 4 5 6

b.colsToWin('O')

b.colsToWin('X')

b.aiMove('O')

b.aiMove('X')

what	methods	will	help?

what	methods	will	help?

1	ply	+	2	ply

intuition-based	
tiebreaking

The	Player	class

Player
pForX

What	data	does	a	computer	AI	player	need?

ox?		tbt?	ply?

string
ox

string
tbt

'X' 'LEFT'
int
ply

2

DATA	MEMBERS

tiebreakTypechecker, O or X moves to look ahead

…	perhaps	surprisingly,	not	so	much.x = Player('X', 'LEFT', 42)
x0rn
o0rn
b.playGame(x0rn, o0rn)

Looking	further	
ahead...	!

How	could	we	write	a	3-ply	lookahead?		
What	about	4-ply?	N-ply?

How	many	ply	of	lookahead	would	we	need	
to	play	a	perfect	game	of	Connect	Four?

Player

__init__(self,	ox,	tbt,	ply)
__repr__(self)

scoreBoard(self,	b)
scoresFor(self,	b)
tiebreakMove(self,	scores)
nextMove(self,	b)

oppCh(self)

Board

__init__(self,	width,	height)

allowsMove(self,	col)

__repr__(self)

addMove(self,	col,	ox)

isFull(self)

winsFor(self,	ox)

hostGame(self)

delMove(self,	col)

playGame(self,	pForX,	pForO)

Demos?

Player's	algorithms...

Make	no	mistake	about	it:	
computers	process	numbers	-	

not	symbols.		

Computers	can	only	help	us	to	
the	extent	that	we	can	
arithmetize	an	activity.

-	paraphrasing	Alan	Perlis

Why	AI	is	challenging:

scoreBoard(self,b) ‘X’
‘O’

Returns a score for any board, b

100.0 50.0 0.0A simple system: for a win for a lossfor anything else

Score for

Score for

Score for

Score for

scoresFor	at	0	ply…

0	ply	is	a	Zen-like	
approach:	exist	

only	in	the	present

 0-ply	means	0	moves	are	made!	

0 ply!
We	still	use -1 as	the	
score	into	a	full	column.

to	
move

o0.scoresFor(b2)

0-ply scores for

x x x x x x x

What	should	scoresFor
return	for							with	ply	==	0

 I try 1 ply!

A	1-ply	lookahead	
player	will	"see"	an	
impending	victory.

 1-ply	means	1	move	is	made!	

1-ply scores for

to	
move

"Gotcha
!"

scoresFor	at	1	ply…

What	should	scoresFor
return	for							with	ply	==	1

o1.scoresFor(b2)

What about 3-ply?

 2-ply	means	2	moves	are	made!	

2-ply scores for

to	
move

A	2-ply	lookahead	
player	will	see	a	way	to	

win	or	block	the	
opponent's	win

"Gotcha!"	+	
"Uh	Oh…"

What	should	scoresFor
return	for							with	ply	==	2

scoresFor	at	2	ply	for

x2.scoresFor(b2)

A	2-ply	lookahead	
player	will	see	a	way	to	

win	or	block	the	
opponent's	win

 2-ply	means	2	moves	are	made!	

2-ply scores for

to	
move

What about 3-ply?

"Gotcha!"	+	
"Uh	Oh…"

What	should	scoresFor
return	for						with	ply	==	2

scoresFor	at	2	ply	for

o2.scoresFor(b2)

b

scoresFor(b)		
ox	==	'O'	and	ply	==	0

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

Quiz

'X'

'O'
you are

playing 'O'
The	same	move	is	evaluated	at	
each	ply...	it's	just	evaluated	

farther	into	the	future!

Fill	in	the	list	of	scores	
returned	by	scoresFor

Each	row	is	different	in	at	least	1	score…

scoresFor(b)		
ox	==	'O'	and	ply	==	1

scoresFor(b)		
ox	==	'O'	and	ply	==	2

scoresFor(b)		
ox	==	'O'	and	ply	==	3

So	many	ply!

b42

b

scoresFor(b)		
ox	==	'O'	and	ply	==	0

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

Quiz

'X'

'O'
you are

playing 'O'
The	same	move	is	evaluated	at	
each	ply...	it's	just	evaluated	

farther	into	the	future!

Fill	in	the	list	of	scores	
returned	by	scoresFor

Each	row	is	different	in	at	least	1	score…

scoresFor(b)		
ox	==	'O'	and	ply	==	1

scoresFor(b)		
ox	==	'O'	and	ply	==	2

scoresFor(b)		
ox	==	'O'	and	ply	==	3

So	many	ply!

b42

-1 50 50 50 50 50 50

-1

-1

-1

b

scoresFor(b)		
ox	==	'O'	and	ply	==	0

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

col 0 col 1 col 2 col 3 col 4 col 5 col 6

Quiz

'X'

'O'
you are

playing 'O'
The	same	move	is	evaluated	at	
each	ply...	it's	just	evaluated	

farther	into	the	future!

Fill	in	the	list	of	scores	
returned	by	scoresFor

Each	row	is	different	in	at	least	1	score…

scoresFor(b)		
ox	==	'O'	and	ply	==	1

scoresFor(b)		
ox	==	'O'	and	ply	==	2

scoresFor(b)		
ox	==	'O'	and	ply	==	3

So	many	ply!

b42

-1 50 50 50 50 50 50

-1 50 50 100 50 50 50

-1 0 0 0 0 50

-1 0 0 0 0

100

100

?

 (self) 'X'
new 'X'

Col 6

Col 5

Col 4Col 3
Col 2

Col 1

Col 0

b

[50,50,50,50,50,100,50]

[0, 0, 0, 0, 0, 0, 0]
[50,50,50,50,50,50,50]

[50,50,50,50,50,100,50]

Opponent's	
scoresFor

[50,50,50,50,50,100,50]

[50,50,50,50,50,100,50] [50,50,50,50,50,100,50]

Idea:	scoresFor		

 (self) 'X'
new 'X'

Col 6

Col 5

Col 4Col 3
Col 2

Col 1

Col 0

b

[50,50,50,50,50,100,50]

[0, 0, 0, 0, 0, 0, 0]
[50,50,50,50,50,50,50]

[50,50,50,50,50,100,50][50,50,50,50,50,100,50]

[50,50,50,50,50,100,50] [50,50,50,50,50,100,50]

Which	score	will	the	
opponent	choose?

max(os) = 100

max(os) = 100

max(os) = 100
max(os) = 100 max(os) = 0

max(os) = 50

max(os) = 100

0

0
0 0 100

50

0

self	gets	the	OPPOSITE	
score	as	a	result!

Opponent's	scoresFor

Idea:	scoresFor		

 (self) 'X'
new 'X'

Col 6

Col 5

Col 4Col 3
Col 2

Col 1

Col 0

b

(0)	Suppose	you're	
playing	at	2	ply...	

(1)	Make	ALL	moves!	

(2)	Ask	OPPONENT	its	
scoresFor	at	ply-1	

(3)	Compute	which	
score	the	opp.	will	take	

(4)	Compute	what	
score	you	get…

[50,50,50,50,50,100,50]

[0, 0, 0, 0, 0, 0, 0]
[50,50,50,50,50,50,50]

[50,50,50,50,50,100,50][50,50,50,50,50,100,50]

[50,50,50,50,50,100,50] [50,50,50,50,50,100,50]

Which	score	will	the	
opponent	choose?

max(os) = 100

max(os) = 100

max(os) = 100
max(os) = 100 max(os) = 0

max(os) = 50

max(os) = 100

0

0
0 0 100

50

0

self	gets	the	OPPOSITE	
score	as	a	result!

Opponent's	scoresFor

scoresFor

Two-player	games	have	been	a	key	focus	of	AI	
as	long	as	computers	have	been	around…

Strategic	thinking	==	intelligence
?

In	1945,	Alan	Turing	
predicted	that	computers	
would	be	better	chess	

players	than	people	in					~	
50	years…	

and	thus	would	have	
achieved	intelligence.

Alan	Turing	memorial	
Manchester,	England

Strategic	thinking		!=		intelligence

humanscomputers	

good	at	evaluating	
the	strength	of	a	
board	for	a	player

good	at	looking	to	find	
winning	combinations	

of	moves

…	humans	and	computers	have	different	
relative	strengths	in	these	games.

Humans	play	via	"look-up	table"

	-	experts	could	reconstruct	these	perfectly	
	-	novice	players	did	far	worse…

An	experiment	(by	A.	deGroot)	was	performed	in	
which	chess	positions	were	shown	to	novice	and	
expert	players	for	a	few	seconds…

Adriaan de Groot

Random	chess	positions	(not	legal	ones)	were	
then	shown	to	the	two	groups

	-	experts	and	novices	did	equally	badly	
	 	at	reconstructing	them!

Adriaan de Groot

Humans	play	via	"look-up"

An	experiment	(by	A.	deGroot)	was	performed	in	
which	chess	positions	were	shown	to	novice	and	
expert	players	for	a	few	seconds…

	-	experts	could	reconstruct	these	perfectly	
	-	novice	players	did	far	worse…

Connecting	Connect	Four	...

...	to	other	strategy	games.
How	complex	are	
these	games?	
Least?	Most?

Connect	4

Connecting	Connect	Four	...

...	to	other	strategy	games.

tic-tac-toe
reversi

checkers

How	complex	are	
these	games?	
Least?	Most?

Go

Connect	4
chess

Games'	Branching	Factors

Branching Factors
for different two-player games

Tic-tac-toe 4
Connect Four 7
Checkers 10
Reversi 30
Chess 40
Go 300
Arimaa 17,000

1 Ply

2 Ply

Boundaries	for	
qualitatively	

different	games…

0 Ply
On	average,	Connect	4	players	
have	seven	choices	per	move.	

Chess	players	have	more,	
perhaps	around	40,	possible	
choices	in	a	given	move.

“solved”	games

computer-dominated

human-dominated

Games'	Branching	Factors

Branching Factors
for different two-player games

Tic-tac-toe 4
Connect Four 7
Checkers 10
Reversi 30
Chess 40
Go 300
Arimaa 17,000

1 Ply

2 Ply

0 Ply
On	average,	Connect	4	players	
have	seven	choices	per	move.	

Chess	players	have	more,	
perhaps	around	40,	possible	
choices	in	a	given	move.

“solved”	games

computer-dominated

human-dominatedonly	until	2016

Boundaries	for	
qualitatively	

different	games…

Connect	4	was	solved	in	1988.

draw/tie	with	
perfect	play

first-player	wins	
(with	perfect	play)

first-player	loses	(with	
perfect	play)

Checkers	was	solved	in	2007.

Games'	complexity		~		xkcd

~2012

(Games'	
Branching	
Factors)

2015

2016

unlikely

2015

2016

2015

2016

unlikely

!
https://www.youtube.com/watch?v=4Sm922Xp5N4

