Ex. Cr. \#1: Read-it-and-weep

$$
\begin{array}{r}
1 \\
11 \\
21 \\
1211 \\
111221 \\
312211 \\
13112221
\end{array}
$$

In the limit, the length of the Nth term of the read-it-andweep sequence is

(1.303577...)
exponential growth

Growth determined analytically...

the 71 roots (complex plane)

$\lambda=1.30357726034296 \ldots$

"Conway's Constant" has an analytic definition!

It is the largest real root of this 71st-degree polynomial !!

$$
\begin{aligned}
& x^{18}(x+1)(x-1)^{2}\left(x^{71}-x^{69}-2 x^{68}-x^{67}+2 x^{66}+2 x^{65}+x^{64}-x^{63}-\right. \\
& x^{62}-x^{61}-x^{60}-x^{59}+2 x^{58}+5 x^{57}+3 x^{56}-2 x^{55}-10 x^{54}-3 x^{53}-2 x^{52}+ \\
& 6 x^{51}+6 x^{50}+x^{49}+9 x^{48}-3 x^{47}-7 x^{46}-8 x^{45}-8 x^{44}+10 x^{43}+6 x^{42}+8 x^{41}- \\
& 5 x^{40}-12 x^{39}+7 x^{38}-7 x^{37}+7 x^{36}+x^{35}-3 x^{34}+10 x^{33}+x^{32}-6 x^{31}-2 x^{30}- \\
& 10 x^{29}-3 x^{28}+2 x^{27}+9 x^{26}-3 x^{25}+14 x^{24}-8 x^{23}-7 x^{21}+9 x^{20}+3 x^{19}- \\
& 4 x^{18}-10 x^{17}-7 x^{16}+12 x^{15}+7 x^{14}+2 x^{13}-12 x^{12}-4 x^{11}-2 x^{10}+5 x^{9}+ \\
& \left.x^{7}-7 x^{6}+7 x^{5}-4 x^{4}+12 x^{3}-6 x^{2}+3 x-6\right) .
\end{aligned}
$$

(1a) Lists are handled "by reference"

rules rule!

(1b) Numbers and strings are handled "by value"
(2) Functions receive inputs "by copy"

(1a) Lists are handled "by reference"

rules rule!

$$
\mathbf{s}=\quad \mathrm{hi}
$$

(1b) Numbers and strings are handled "by value"

(2) Functions receive inputs "by copy"

The contents of the variable's "box" in memory are copied.
in main:
fav = 7
f(fav)

def $f(x)$:
\mathbf{x} is a copy of fav

Reference vs. Value

Python's two methods for handling data

Lists are handled by reference:
L really holds a memory address
Lists are handled by reference:
L really holds a memory address

$$
\mathbf{s}=\text { 'hi' }
$$

$$
x=7
$$

Numeric data and strings are handled by value: imagine they hold the data

Shallow vs. Deep

Python's two methods for copying data

$$
\begin{aligned}
& \mathrm{L}=[5,42, \text { 'hi' }] \\
& \mathrm{M}=\mathrm{L}
\end{aligned}
$$

$$
M[0]=60
$$

What's L[0] ?!
= assignment is "shallow"

Shallow vs. Deep

Python's two methods for copying data

from copy import *

$$
\begin{aligned}
& L=[5,42, ' h i '] \\
& M=\operatorname{deepcopy}(L)
\end{aligned}
$$

$$
\mathrm{M}[0]=60
$$

What's L[0] ?!
deepcopy is deep!

Shallow vs. Deep

Python's two methods for copying data

from copy import *

$$
\begin{aligned}
& \mathrm{L}=[5,42, ' \mathrm{hi}] \\
& \mathrm{M}=\mathrm{L}[:]
\end{aligned}
$$

$$
\mathrm{M}[0]=60
$$

What's L[0] ?!
but only one-level
slicing is also deep!

Python functions: pass by copy

def conform(fav)

```
fav = 42
return fav
```


def main()
print(" Welcome! ")
fav $=7$
fav $=$ conform(fav)
print(" My favorite \# is", fav)

Python functions: pass by copy

def conform(fav)

```
fav = 42
return fav
```


def main()

> print(" Welcome! ")
> fav $=7$
> fav $=$ conform(fav)
print(" My favorite \# is", fav)

"pass by copy" means the contents of fav are copied to fav

Try it!

Numbers: by value.

Lists: by reference.

Function calls copy.

Thought experiments: Don't hand this in...
def conform1(fav) fav $=42$ return fav

def main1() fav $=7$ conform1(fav) print(fav)
def conform2(L)
$\mathrm{L}=[42,42]$
return L

def main2()
$\mathrm{L}=[7,11]$
conform2(L)
print(L)

def conform3(L)

$$
\begin{aligned}
& \mathrm{L}[0]=42 \\
& \mathrm{~L}[1]=42
\end{aligned}
$$

L

def main3()
$\mathrm{L}=[7,11]$
conform3(L) print(L)

Lists are Mutable

You can change the contents of lists from within functions that take lists as input.

- Lists are MUTABLE objects

Those changes will be visible everywhere.

2D data!

All and only the rules that govern 1D data apply here - no new rules to learn!
~ pure composition

Lists ~ 1D data

$$
A=[42,75,70]
$$

Lists ~ 1D data

$A=[42,75,70]$


```
len(A) ?
id(A) ?
id(A[0]) ?
```

1D lists are familiar - but lists can hold ANY kind of data - including lists!

Lists ~ 2D data

$$
A=[\quad[1,2,3,4],[5,6],[7,8,9,10,11]]
$$

What does this A "look like"?

Where's 3 ?

$\operatorname{len}(A) \quad \operatorname{len}(A[0])$

Replace 10 with 42.

Lists ~ 2D data

$A=[\quad[1,2,3,4],[5,6],[7,8,9,10,11]]$

Where's 3?

Replace 10 with 42.

Rectangular 2D data

$\mathrm{A}=[\quad[0,0,0,0],[0,0,0,0],[0,0,0,0]]$

Original data...
$A[1][2]=42$
$\mathrm{A}[\mathrm{r}][\mathrm{c}]=$ value

Rectangular 2D data

$\mathrm{A}=[\quad[0,0,0,0],[0,0,0,0],[0,0,0,0]]$

Original data...
$\mathrm{A}[1][2]=42$

cor cos
 $A[r][c]=$ value

Rectangular 2D data

 $\mathrm{A}=[\quad[0,0,0,0],[0,0,0,0],[0,0,0,0]]$

NROWS = len(A) \# HEIGHT
NCOLS = len(A[0]) \# WIDTH
for r in range(0,NROWS): for c in range(0,NCOLS):

$$
\begin{array}{ll}
\text { if } r=c: & A[r][c]=4 \\
\text { else }: & A[r][c]=2
\end{array}
$$

Nested Loops ~ 2d Data

2 in-a-row?

$A=\left[\begin{array}{ll} & 2,2,2], \\ \hline\end{array}\right.$ $[2,2,4,4]$, $[2,4,4,2]$]
def two_in_a_row (A):
""" what's happening ? """
NROWS = len (A)
NCOLS $=\operatorname{len}(\mathbb{A}[0])$
$B=$ deepcopy (A)
for r in range ($0, N R O W S$):
for c in range ($0, N C O L S$):

	$\underset{ }{A}$			
row $0 \longrightarrow$	4	2	2	2
row $1 \longrightarrow$	2	2	4	4
row $2 \rightarrow$	2	4	4	2
	col 0	col 1	col 2	col 3

```
        if c == NCOLS-1:
            B[r][c] = False
        elif A[r][c] == A[r][c+1]:
            B[r][c] = True
        else:
            B[r][c] = False
```

B

What does two_in_a_row(A) place into B?

hw9pr2

$$
\begin{aligned}
& A=[\quad[4,2,2,2] \text {, } \\
& {[2,2,4,4] \text {, }} \\
& {[2,4,4,2] \text {] }}
\end{aligned}
$$

def two_in_a_row (A):
""" what happens here ? """
NROWS = len (A)
NCOLS $=$ len (A[0])
$\mathrm{B}=$ deepcopy (A)
for r in range ($0, N R O W S$): for c in range ($0, N C O L S$):

```
                B[r][c] = False
    elif A[r][c] == A[r][c+1]:
            B[r][c] = True
    else:
            B[r][c] = False
```

How could we change the code above to check for two-in-a-row SOUTHWARD or DIAGONALLY !?!

2 in a row eastward - yes!
B

What two_in_a_row(A) places into B...

hw9pr2...

def two_in_a_row (. "" " what happ NROWS $=\operatorname{len}(\mathrm{A})$ NCOLS $=$ len (A B = deepcopy $($
for r in range ($0, N R O W S$): for c in range ($0, N C O L S$):

$$
\begin{aligned}
& =\text { NCOLS }-1: \\
& \mathrm{B}[r][\mathrm{c}]=\text { False }
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } c= \text { NCOLS-1: } \\
& B[r][c]=\text { False } \\
& \text { elif } A[r][c]= \text { A }[r][c+1]: \\
& B[r][c]=\text { True } \\
& \text { else: } \\
& B[r][c]=\text { False }
\end{aligned}
$$

2 in a row eastward - yes!
B

F	T	T	F
T	F	T	F
F	T	F	F

What two_in_a_row(A) places into B...

First, try it by eye... ... then, on hw9pr2, w/Python!

$$
\begin{aligned}
& \text { row }\left[\mathrm{X}^{\prime}, \mathrm{X}^{\prime}, \mathrm{X}^{\prime} \mathrm{X}^{\prime}, \mathrm{O}^{\prime}, \mathrm{O}^{\prime} \mathrm{O}^{\prime}\right], \\
& \text { row }\left[', X^{\prime}, \mathrm{X}^{\prime} \mathrm{O}^{\prime}, \mathrm{X}^{\prime}, \mathrm{O}^{\prime} \mathrm{O}^{\prime}\right], \\
& \text { row }\left[X^{\prime}, ' O^{\prime}, ' O^{\prime}, ' \quad ', X^{\prime}\right] \text {] }
\end{aligned}
$$

checker | start | start |
| :---: | :---: |
| row | col |

First, try it by eye... ... then, on hw9pr2, w/Python!

$$
\begin{aligned}
& \text { col } 0 \quad \text { col } 1 \quad \text { col } 2 \\
& \text { A = [ow[' ','X','O',' ','O'], } \\
& \text { m"'X','X','X','O','O'], } \\
& \text { om [' ','X','O','X','O'], } \\
& \text { om ['X','O','O',' ','X']] }
\end{aligned}
$$

inarow_3south('O', 0, 4, A)
inarow_3southeast('X', 2, 3, A)
inarow_3northeast('X', 3, 1, A)

hw9pr1 (lab): Conway's Game of Life

Geometer @ Princeton

simple rules \sim surprising behavior

The fantastic combinations of John Conway's new solitaire game "life"

Lab Problem: Conway's Game of Life

Grid World

red cells are "alive"

white cells are empty

Evolutionary rules

- Everything depends on a cell's eight neighbors
- Exactly 3 neighbors give birth to a new, live cell.
- Exactly 2 or 3 neighbors keep an existing cell alive.
- Any other \# of neir' rules and the cer. only 2 rule

Lab Prn ${ }^{-1}$

 "Parent generation"
Grid World

red cells are "alive"

white cells are empty

ay's Game of Life

Evolutionary rules

- Everything depends on a cell's eight neighbors
- Exactly 3 neighbors give birth to a new, live cell.
- Exactly 2 or 3 neighbors keep an existing cell alive.
- Any other \# of neighbors and the central cell dies...

Lab Prnh

 "Child generation"
Grid World

red cells are "alive"

white cells are empty

ay's Game of Life

Evolutionary rules

- Everything depends on a cell's eight neighbors
- Exactly 3 neighbors give birth to a new, live cell.
- Exactly 2 or 3 neighbors keep an existing cell alive.
- Any other \# of neighbors and the central cell dies...

Lab Prn' ${ }^{\prime}$

 "Grandchild generation" $x y$'s Game of LifeGrid World
red cells are alive

white cells are empty

Evolutionary rules

 cell's eig What's- Exactly 3 neighbors give birth to a new, live cell.
- Exactly 2 or 3 neighbors keep an existing cell alive.
- Any other \# of neighbors and the central cell dies...

Lab Problem: Creating life

next_life_generation(A)

For each cell...

- 3 live neighbors - life!
- 2 live neighbors - same
- $0,1,4,5,6,7$, or 8 live neighbors - death
- computed all at once, not cell-by-cell, so the ? at left does NOT come to life, but? does!

Lab Problem: Creating life

next_life_generation(A)

old generation is the input, A

returns the next generation

Lab Problem: Creating life

Stable configurations:
"rocks"

Periodic
"plants"

period 3

Self-propagating "animals"

Life @ HMC?

Lab Problem: Creating life

Many life configurations expand forever...

What is the largest amount of the life universe that can be filled with cells?

How sophisticated can Life-structures get?

