Ex. Cr. #1: Read-it-and-weep

1 In the limit, the length of the
11 Nth term of the read-it-and-

21 weep sequence 1S
1211 (1.303577...) N eng"n;:hla
111221 |

312211
this b found tationally b
1 3 1 1 2 2 2 1 tali?ngarsei)‘év;cido;lar‘iiogoor?fel;r?l ;grrllgtgs...y

Growth determined analytically...

. .« A=1.30357726034296...

. !

°* o "Conway's Constant” has an
o " 02 0-° °es analytic definition!
s
= ® . .
. o It is the largest real root of this
Py -0D.5 . I
e o . e 71st-degree polynomial !!
o« ' o o :
the 71 roots * °.tl- e, *
(complex plane) ® o o0 °
\ 4
1‘]8(.1‘+1:)(.1‘—1:)2(v O lm 2_ lh, +21h¢'i+21()')+lbl_‘lhi_
.1'“2 — 2% 2% 2% 4255 1 525 4327 — 2.1'7""’ —10z™ — 32 —22°% +
6z +6x" +1“+911\—311—411—bz —h’ -+—1()1 Y6t 81'“—
50 —1227 + 72" — Tz "—I-T.z'%-}-. "—3 H102* 2 —61 2. - Th'\sseems ‘
102 —32% +22* + 92 — 32 + 14 2% — 8.1-3“ — 7z + 97 + 3! fr\ghteﬂ‘“g""
42" —102" — 72" + 122 + 72 + 227 —_1‘2.1' 4 =2 —+—:).1"+
r’ — T2 +72° —42* +122° — 62 + 3z — G‘).

http://www.njohnston.ca/2010/10/a-derivation-of-conways-degree-71-look-and-say-polynomial/

In CS,
rules rule!

(1a) Lists are handled "by reference”

(1b) Numbers and strings are handled "by value”

(2) Functions receive inputs "by copy”

two Yu\esy

" ‘-
nipteresting results

In CS,
rules rule!

(1a) Lists are handled "by reference"

"Reference"

"Pointer" I, = [5,42,'hi'] s = 'hi'

id I\A

|
42,042 / AN 'hi'
5 42 hi
L ﬂ L[O]I:iL[l]IjiL[Ziﬂ S ﬂ

(1b) Numbers and strings are handled "by value”

The contents of the

(2) Functions receive inputs "by copy" variable’s "box” in
memory are copied.

in main: 7 ~//| def f(x):
tav = 7 fav V 7
f (fav) X

x is a copy of fav

Reference vs. Value

Python's two methods for handling data

"Reference"”

"Pointer" I, = [5’42,'hi'] s = '"hi' x = 7

id!\t

lh'l
42,042 ﬂ 5 12 Sy (i Q (7 ﬂ
L L[O] L[1] L[2] S =

Lists are handled by reference: Numeric data and strings are handled
L really holds a memory address by value: imagine they hold the data

L =[542hi"l; id(L) ... s="hi"; id(s) ... x=7:id(x) ...

Shallow vs. Deep

Python's two methods for copying data

"Reference"”

"Pointer” L = [5,42,'hi']

id

/

L =1[5,42,'hi']

42,042 ﬂ 5 10 Thi M _ L
L L[O] L[1] L[2] -

M[O] = 60

v ﬂ What's L[0] ?!

= assignment is "shallow"

Shallow vs. Deep

Python's two methods for copying data

from copy import *
L =1[5,42,'hi']
|
42,042 S 1o Sr
L ﬂ ﬁmﬁ:[l][}Lmi j M = deepcopy(l_)

M[O] = 60

42,042 ;
> ﬂ What's L[0] ?!

"Reference"”

"Pointer” L = [5,42,'hi']

id

/

deepcopy is deep!

Shallow vs. Deep

Python's two methods for copying data

from copy import *
L =1[5,42,'hi']
) EFEHD m-w
M[O] = 60

42,042 ;
> ﬂ What's L[0] ?!

"Reference"”

"Pointer” L = [5,42,'hi']

id

/

but only one-level

slicing is also deep!
L Sy

import antigravity! /7,

shallow

Python functions: pass by copy

conform(fav)
fav = 42
s fav

main ()
(" Welcome! ")
fav = 7 7
fav = conform(fav)
fav

(" My favorite # is", fav)

shallow

Python functions: pass by copy

conform(fav)

fav = 42
fav
main ()
(" Welcome! ")
fav 7

fav conform (£fav)

(" My favorite # is", fav)

-

copy of fav

"pass by copy" means
the contents of fav are

copied to fav

-/

fav

But what if the underlined part were absent... ?

Try It! Rules rule!?

Numbers: by value.

Lists: by reference.

Function calls copy.

Trace each f'n. What do mainl, main2, and main3 print?

Thought experiments: Don't hand this in...

conforml1(fav) conform2(L) conform3(L)
fav = 42 L =[42,42] L[0] = 42
fav L L[1] =42
fav L
fav L L[0] L[1] L ’ L[0] L[1]
mainl() main2() main3()
fav =7 L=[7,11] L=[7,11]
conforml1(fav) conform2(L) conform3(L)
(fav) (L) (L)

Notice that there are NO assignment statements after these function calls! The return values aren't being used...

Lists are Mutable

You can change the contents of lists from
within functions that take lists as input.

- Lists are MUTABLE objects

Those changes will be visible
everywhere.

Numbers, strings, etc. are IMMUTABLE -
they can't be changed, only reassigned.

2D data!

All and only the rules

apply here - 1O new rules to learn!

~ pure composition

Lists ~ 1D data

A= 42, 75, 70]

len(A) ?] . .
id(A) ? 1D lists are familiar - but lists can hold

id(A[e]) ? ANY Kkind of data - including lists!

Lists ~ 1D data

A= 42, 75, 70]

>/ 42 75 70
list int int int
A
len(A) ? : . .
id(A) ? 1D lists are familiar - but lists can hold

id(A[e]) ? ANY Kkind of data - including lists!

Lists ~ 2D data

A=111,2,3,4], [5,6]1, [7,8,9,10,11]]

Where's 37? len (A) len(A[O]) Replace 10 with 42.

len(A[1])

Lists ~ 2D data

A=1_11,2,3,4], [5,6], [7,8,9,10,11]]
» >/ 1 2 3 4
li;t 11,*1[:1]: A[0][0] A[0][1] A[0][3]
il /B 6 A[0][2]
A[1] A[1][0] A[1][1] A[Z][3] - 42
list) 7 8 9 10 11
A[2] A[2][0] A[2][1] A[2][2] A[2][3] A[2][4]
a4
Where's 37? len (A) len(A[O]) Replace 10 with 42.

3 len(A[1])
2

Rectangular 2D data

A N
- list
list A[0]
A A[0][0]
| 3

list
A[l]

ist
A[2]

A[2][3]

A[1][2] = 42
Alr][c]

value

Rectangular 2D data

A N
- list
list A[0]
A A[0][0]

> 42

All]

A[1][2] row == 1

| 3

is
A[2]

A[2][3]
col == 2

A[1][2] =
o\ | A[mF-"] [c]

row == 1 col ==

value

Rectangular 2D data

A N
- list
list A[0]
A A[0][0]

|

list

A[1]
/
list
A[2]
A[2][3]
NROWS = len(A) # HEIGHT
NCOLS = len(A[@]) # WIDTH

for r in range(©,NROWS): NeSted LOOpS

for ¢ in range(©,NCOLS):
if r ==c: A[r][c] = 4 ~ Zd Data
else: Alr][c]

Zln-a-rOW? A = [[4, 2, 2’ 2],
[2’ 2’ 4’ 4] ’
[2’ 4' 4/ 2]]
two in a row(A):
""" what's happening ? """ A
NROWS = len(A)
NCOLS = len (A[O]) row(Q — 4 2 2 2
B = deepcopy(A) i | 2) Z a
row 2 — 2 4 4 2
r range(O,NROWS) :
c range(O,NCOLS) : col 0 col 1 col 2 col 3

c == NCOLS-1:
B[r] [c] = False
A[r][c] == A[r] [c+1]:
B[r] [c] = True

False \\\\\\\: B
/V

Blr][c]

Challenge: How could we change the code above to check for :
two-in-a-row SOUTHWARD -- or DIAGONALLY !? What does tw.o_ln_a_row(A)
place into B?

hw9pr2...

A=1[4, 2, 2, 2],
[2, 2, 4, 4],
[2, 4, 4, 2]]
def two _in a row(A):
""" what happens here ? """ Z\
NROWS = len (A)
NCOLS = len(A[0]) owo— | 41 2 2 2
B = deepcopy(A) ow1 — | 2 | 2 4 4
row 2 =—> 2 4 4 2
for r in range(O,NROWS):
for ¢ in range(0,NCOLS): i colt ol ol
if o == NCOLS-1: on the far edge!
//4 B[r] [c] = False
elif A[r][c] == A[r][c+l]:
B[r][c] = True « 2 in a row eastward - yes!
else:
B[r][c] = False E3
\ ‘notharow F T T
—
1 r T
F T F
Challenge: How could we change the code above to check for What two_in_a_row(A)

two-in-a-row SOUTHWARD or DIAGONALLY !?!)
places into B...

hw9pr2... h 9 2
ur nwzp
two in _a row (. USe as yO

i raqrting pointe t

NCOLS = len(A]
B = deepcopy (, i | 2 5 a 1
row 2 ——» 2 4 4 2
r range(O0,NROWS):
c range (0,NCOLS : col0 col1l col 2 ol 3
= == =1 b on the far edge!
4 B[r] [c] = False
A[r][c] == A[r] [c+1]:

« 2 in a row eastward - yes!

B

B[r][c] = True

B[r] [c] = False
k Gnot 2 inarow T T
1 1
T
Challenge: How could we change the code above to check for What two_in_a_row(A)

two-in-a-row SOUTHWARD or DIAGONALLY !?!)
places into B...

First, try it by eye... ... then, on hw9pr2, w/Python!

A — [rowO[' V’VXVIVOV’V ','O'],
rowl['x','x','X'I'O','O'],
rowz[' |’1x1,10|"x‘,|0|],
row3['x1,10|"01,' VIVXV]]

i
the data 4oSS8=
wrap arou”

start start
checker row col LoL

inarow 3east('X', 1, 0, A) =

First, try it by eye... ... then, on hw9pr2, w/Python!

A — [rowO[' ',VXV,'O',' '['O']]
rowl['x','x','x','o','O'],
rowz[' |’|X|,|O|’|X|,|O'],
rowg['X','OVIVO',' VIVXV]]

't
the data 4oSS8=

wrap aroun
start start
checker row col LoL
inarow 3east('X', 1, 0, A) > True
inarow 3south('O', 0, 4, A) >

inarow 3southeast('X', 2, 3, A) —>

inarow 3northeast('X', 3, 1, A) —>

hw9prl1 (lab): Conway's Game of Life

1995

(no trig)

simple rules ~ surprising behavior

The fantastic combinations of John Conway's
new solitaire game "'life"

by Martin Gardner not really solitaire...

Scientific American 223 (October 1970): 120-123. 1 970

Lab Problem: Conway’s Game of Life

Grid World

red cells are "alive"

white cells are empty

Evolutionary rules

e Everything depends on a
cell's eight neighbors

e Exactly 3 neighbors give
birth to a new, live cell.

e Exactly 2 or 3 neighbors
keep an existing cell alive.

e Any other # of nei~' * \\g5
and the cer’ O“N p (\)

Grid World

red cells are "alive

white cells are empty

1y's Game of Life
Evolutionary rules

e Everything depends on a
cell's eight neighbors

e Exactly 3 neighbors give

birth to a new, live cell.

e Exactly 2 or 3 neighbors
keep an existing cell alive.

e Any other # of neighbors
and the central cell dies...

Lab Prox' .o ay’s Game of Life

Grid World Evolutionary rules

red cells are "alive

e Everything depends on a
cell's eight neighbors

e Exactly 3 neighbors give

birth to a new, live cell.

e Exactly 2 or 3 neighbors

keep an existing cell alive.

e Any other # of neighbors

and the central cell dies...
white cells are empty

Lab P=='* _ ation ay's Game of Life

Grid World Evolutionary rules

red cells are alive

e Everything 8-
cell's eig

e Exactly 3 neighbors give

birth to a new, live cell.

e Exactly 2 or 3 neighbors

keep an existing cell alive.

e Any other # of neighbors
and the central cell dies...

white cells are empty

Lab Problem: Creating life

next life generation(A)

For each cell...

e 3 live neighbors - life!

e 2 live neighbors - same

e0,1,4,5, 6,7, or 8 live
neighbors - death

e computed all at once, not cell-
by-cell, so the ? at left does NOT
come to life, but ? does!

http://www.math.com/students/wonders/life/life.html

Lab Problem: Creating life

next life generation(A)

old generation is the input, A returns the next generation

Lab Problem: Creating life
HE

Stable configurations: B

"rocks" .

Periodic amm Cwm
"plantS" HEn =:I I:= HEN
period 2 mEREEES
period 3
EN__EN
1]
]
EN EN
| n
Self- ti "y
ell-propagating EEEN
"animals” [
glider -

Copperhead: 2016

opperhead

..
-
=,
"
S
[oﬁ
—~

Life @ HMC!

Lab Problem: Creating life

Many life configurations expand forever...

. g

-

"Gosper glider gun”

"glider”

What is the largest amount of the life
universe that can be filled with cells?

How sophisticated can Life-structures get?

www.ibiblio.org/lifepatterns/

