
1
11
21

1211
111221
312211

13112221
…

In	the	limit,	the	length	of	the	
Nth	term	of	the	read-it-and-

weep	sequence	is	

(1.303577...)
exponential	
growth

Ex.	Cr.	#1:			Read-it-and-weep

N

this	base	was	found	computationally	by	
taking	repeated	ratios	of	term	lengths...

experimentally	found	growth...

λ = 1.30357726034296…

"Conway's	Constant"	has	an	
analytic	definition!	

It	is	the	largest	real	root	of	this	
71st-degree	polynomial	!!

Growth	determined	analytically…

the	71	roots						
(complex	plane)

This	seems	

frightening.
..!

http://www.njohnston.ca/2010/10/a-derivation-of-conways-degree-71-look-and-say-polynomial/

In	CS,	
rules	rule!

(1b)	Numbers	and	strings	are	handled	"by	value"

(2)	Functions	receive	inputs	"by	copy"

(1a)	Lists	are	handled	"by	reference"

two	rules,
"interesting"	r

esults!

In	CS,	
rules	rule!

(1b)	Numbers	and	strings	are	handled	"by	value"

(2)	Functions	receive	inputs	"by	copy"
The	contents	of	the	
variable's	"box"	in	
memory	are	copied.

7
fav

7
x

def f(x):

x	is	a	copy	of	fav

L
L[0] L[1] L[2]

"Reference"	
"Pointer"	

id L = [5,42,'hi']

5 42 'hi'

s

'hi'

s = 'hi'

(1a)	Lists	are	handled	"by	reference"

42,042

in	main:	
			fav = 7
 f(fav)

Reference					vs.				Value
Python's	two	methods	for	handling	data

Lists	are	handled	by	reference:		
L	really	holds	a	memory	address

Numeric	data	and	strings	are	handled	
by	value:	imagine	they	hold	the	data

L
L[0] L[1] L[2]

"Reference"	
"Pointer"	

id L = [5,42,'hi']

5 42 'hi'42,042

s

'hi'

s = 'hi'

x

7

x = 7

x	=	7;		id(x)	...s	=	'hi';		id(s)	...L	=	[5,42,'hi'];		id(L)	...

Shallow				vs.				Deep
Python's	two	methods	for	copying	data

L
L[0] L[1] L[2]

"Reference"	
"Pointer"	

id L = [5,42,'hi']

5 42 'hi'42,042

L	=	[5,42,'hi']

M

M	=	L

M[0]	=	60

What's	L[0]	?!

=		assignment	is	"shallow"

Shallow				vs.				Deep
Python's	two	methods	for	copying	data

L
L[0] L[1] L[2]

"Reference"	
"Pointer"	

id L = [5,42,'hi']

5 42 'hi'42,042

L	=	[5,42,'hi']

M
42,042

M	=	deepcopy(L)

M[0]	=	60

What's	L[0]	?!

deepcopy	is	deep!

from	copy	import	*

Shallow				vs.				Deep
Python's	two	methods	for	copying	data

L
L[0] L[1] L[2]

"Reference"	
"Pointer"	

id L = [5,42,'hi']

5 42 'hi'42,042

L	=	[5,42,'hi']

M
42,042

M	=	L[:]

M[0]	=	60

What's	L[0]	?!

slicing	is	also	deep!
import	antigravity!

from	copy	import	*

but	only	one-level
^

Python	functions:		pass	by	copy

def main()

 print(" Welcome! ")

 fav = 7
 fav = conform(fav)

 print(" My favorite # is", fav)

7

fav

fav

def conform(fav)

 fav = 42
 return fav

shallow
^

def main()

 print(" Welcome! ")

 fav = 7
 fav = conform(fav)

 print(" My favorite # is", fav)

7

fav

def conform(fav)

 fav = 42
 return fav

7

copy	of	fav

"pass	by	copy"	means	
the	contents	of	fav	are	

copied	to	fav

fav

But	what	if	the	underlined	part	were	absent…	?

Python	functions:		pass	by	copy
shallow

^

Rules	rule!?

def	conform1(fav)	
				fav	=	42	
				return	fav	

def	conform2(L)	
				L	=	[42,42]	
				return	L

Try	it! Trace	each	f'n.	What	do		main1,		main2,	and	main3	print?

def	conform3(L)	
				L[0]	=	42	
				L[1]	=	42

fav

fav

L

L
7

Notice	that	there	are	NO	assignment	statements	after	these	function	calls!			The	return	values	aren't	being	used…

L[0]
7

def	main2()	
				L	=	[7,11]			
				conform2(L)	
				print(L)

def	main1()	
				fav	=	7			
				conform1(fav)	
				print(fav)

def	main3()	
				L	=	[7,11]			
				conform3(L)	
				print(L)

L

L[1]
11

L L[0]
7

L[1]
11

Thought	experiments:	Don't	hand	this	in…Numbers:		by	value. Lists:		by	reference. Function	calls	copy.

42042 42042

Lists	are	Mutable

You	can	change	the	contents	of	lists	from	
within	functions	that	take	lists	as	input.

Those	changes	will	be	visible	
everywhere.

-		Lists	are	MUTABLE	objects

Numbers,	strings,	etc.	are	IMMUTABLE	–	
they	can't	be	changed,	only	reassigned.

2D	data!
All	and	only	the	rule

s	that	govern	1D	dat
a	

apply	here	–	no	new
	rules	to	learn!

~	pure	composition

Lists	~	1D	data

A = [42, 75, 70]

1D	lists	are	familiar	–	but	lists	can	hold	
ANY	kind	of	data	–	including	lists!

len(A)	?	
id(A)		?	
id(A[0])	?

What	does		A		
"look	like"	?

Lists	~	1D	data

A = [42, 75, 70]

42 75 70
int int intlist

A

1D	lists	are	familiar	–	but	lists	can	hold	
ANY	kind	of	data	–	including	lists!

len(A)	?	
id(A)		?	
id(A[0])	?

Lists	~	2D	data

A = [[1,2,3,4], [5,6], [7,8,9,10,11]]

len(A) len(A[0]) Replace	10	with	42.Where's	3?
len(A[1])

What	does	this
		A		"look	like"	

?

list
A

Lists	~	2D	data

list

list

list

A[0]

A[1]

A[2]

A = [[1,2,3,4], [5,6], [7,8,9,10,11]]

A[0][0] A[0][1] A[0][3]

A[1][0] A[1][1]

A[2][0] A[2][1] A[2][2] A[2][3] A[2][4]

len(A) len(A[0]) Replace	10	with	42.

1 2 4

A[0][2]

3

5 6

7 8 109 11

Where's	3?
len(A[1])

A[2][3]	=	42

3

4

2

list
A

list

list

list

A[0]

A[1]

A[2]
A[2][3]

A[0][0]

A = [[0,0,0,0], [0,0,0,0], [0,0,0,0]]

0 0 0 0

0 0 0 0

0 0 0 0

Rectangular	2D	data

Original
data...

A[1][2]	=	42

A[r][c]	=	value

list
A

list

list

list

A[0]

A[1]

A[2]

A[1][2]

A[0][0]

A = [[0,0,0,0], [0,0,0,0], [0,0,0,0]]

0 0 0 0

0 0 42 0

0 0 0 0

Rectangular	2D	data

Original
data...

A[1][2]	=	42

A[r][c]	=	value

row	==	1

col	==	2
A[2][3]

row	==	1 col	==	2

row	r col	c

list
A

list

list

list

A[0]

A[1]

A[2]
A[2][3]

A[0][0]

A = [[0,0,0,0], [0,0,0,0], [0,0,0,0]]

0 0 0 0

0 0 0 0

0 0 0 0

Rectangular	2D	data

	NROWS	=	len(A)			#	HEIGHT	
	NCOLS	=	len(A[0])		#	WIDTH	

	for	r	in	range(0,NROWS):	
					for	c	in	range(0,NCOLS):	
	 		if	r	==	c:			A[r][c]	=	4	
	 		else:								A[r][c]	=	2

Original
data...

Nested	Loops	
~	2d	Data

How	could	we	change	the	code	above	to	check	for	
two-in-a-row	SOUTHWARD	--	or	DIAGONALLY	!?

 4 2 2 2
 2 2 4 4
 2 4 4 2

def two_in_a_row(A):
 """ what's happening ? """
 NROWS = len(A)
 NCOLS = len(A[0])
 B = deepcopy(A)

 for r in range(0,NROWS):
 for c in range(0,NCOLS):
 if c == NCOLS-1:
 B[r][c] = False
 elif A[r][c] == A[r][c+1]:
 B[r][c] = True
 else:
 B[r][c] = False

A
row	0

row	1

row	2

col	0 col	1 col	2 col	3

A = [[4, 2, 2, 2],
 [2, 2, 4, 4],
 [2, 4, 4, 2]]

Challenge:

B

What	does	two_in_a_row(A)	
place	into	B?

2	in-a-row	?

hw9pr2…

 4 2 2 2
 2 2 4 4
 2 4 4 2

row	0

row	1

row	2

col	0 col	1 col	2 col	3

A = [[4, 2, 2, 2],
 [2, 2, 4, 4],
 [2, 4, 4, 2]]

A

on	the	far	edge!

2	in	a	row	eastward	–	yes!

not	2	in	a	row

def two_in_a_row(A):
 """ what happens here ? """
 NROWS = len(A)
 NCOLS = len(A[0])
 B = deepcopy(A)

 for r in range(0,NROWS):
 for c in range(0,NCOLS):
 if c == NCOLS-1:
 B[r][c] = False
 elif A[r][c] == A[r][c+1]:
 B[r][c] = True
 else:
 B[r][c] = False

How	could	we	change	the	code	above	to	check	for	
two-in-a-row	SOUTHWARD	or	DIAGONALLY	!?!

Challenge:

B

What	two_in_a_row(A)	
places	into	B...

	F			T			T			F	
	T			F			T			F	
	F			T			F			F

hw9pr2…

 4 2 2 2
 2 2 4 4
 2 4 4 2

row	0

row	1

row	2

col	0 col	1 col	2 col	3

A = [[4, 2, 2, 2],
 [2, 2, 4, 4],
 [2, 4, 4, 2]]

A

on	the	far	edge!

2	in	a	row	eastward	–	yes!

not	2	in	a	row

def two_in_a_row(A):
 """ what happens here ? """
 NROWS = len(A)
 NCOLS = len(A[0])
 B = deepcopy(A)

 for r in range(0,NROWS):
 for c in range(0,NCOLS):
 if c == NCOLS-1:
 B[r][c] = False
 elif A[r][c] == A[r][c+1]:
 B[r][c] = True
 else:
 B[r][c] = False

How	could	we	change	the	code	above	to	check	for	
two-in-a-row	SOUTHWARD	or	DIAGONALLY	!?!

Challenge:

B

What	two_in_a_row(A)	
places	into	B...

	F			T			T			F	
	T			F			T			F	
	F			T			F			F

Use	as	your	hw9p
r2	

starting	point...	!

First,	try	it	by	eye…

A = [[' ','X','O',' ','O'],
 ['X','X','X','O','O'],
 [' ','X','O','X','O'],
 ['X','O','O',' ','X']]

inarow_3east('X', 1, 0, A)
checker

start	
row

start	
col LoL

col	0 col	1 col	2 col	3 col	4

row	0

row	1

row	2

row	3

…	then,	on	hw9pr2,	w/Python!

the	data	d
oesn't	

wrap		aro
und

First,	try	it	by	eye…

A = [[' ','X','O',' ','O'],
 ['X','X','X','O','O'],
 [' ','X','O','X','O'],
 ['X','O','O',' ','X']]

inarow_3east('X', 1, 0, A)

inarow_3south('O', 0, 4, A)

inarow_3southeast('X', 2, 3, A)

inarow_3northeast('X', 3, 1, A)

checker
start	
row

start	
col LoL

True

col	0 col	1 col	2 col	3 col	4

row	0

row	1

row	2

row	3

the	data	d
oesn't	

wrap		aro
und

…	then,	on	hw9pr2,	w/Python!

John	Conway

hw9pr1	(lab):		Conway's	Game	of	Life

1970

60˚ 70˚

20˚ 10˚

?

(no	trig)

simple	rules	~		surprising	behavior	

1995

Geometer	@	Princeton

not	really	solitaire...

Lab	Problem:		Conway's	Game	of	Life

Evolutionary	rulesGrid	World

•	Everything	depends	on	a	
cell's	eight	neighbors

red	cells	are	"alive"

white cells are empty

•	Exactly	3	neighbors	give	
birth	to	a	new,	live	cell.

•	Exactly	2	or	3	neighbors	
keep	an	existing	cell	alive.

•	Any	other	#	of	neighbors	
and	the	central	cell	dies…Only	2

	rules

1
2

3

4 5

6 7 8

white cells are empty

Lab	Problem:		Conway's	Game	of	Life

•	Everything	depends	on	a	
cell's	eight	neighbors

red	cells	are	"alive"

•	Exactly	3	neighbors	give	
birth	to	a	new,	live	cell.

•	Exactly	2	or	3	neighbors	
keep	an	existing	cell	alive.

•	Any	other	#	of	neighbors	
and	the	central	cell	dies…

"Parent	g
eneration

"

Evolutionary	rulesGrid	World

rule	1

white cells are empty

Lab	Problem:		Conway's	Game	of	Life

•	Everything	depends	on	a	
cell's	eight	neighbors

red	cells	are	"alive"

•	Exactly	3	neighbors	give	
birth	to	a	new,	live	cell.

•	Exactly	2	or	3	neighbors	
keep	an	existing	cell	alive.

•	Any	other	#	of	neighbors	
and	the	central	cell	dies…

"Child	ge
neration"

rule	2

Evolutionary	rulesGrid	World

red cells are alive

white cells are empty

Lab	Problem:		Conway's	Game	of	Life

•	Everything	depends	on	a	
cell's	eight	neighbors

•	Exactly	3	neighbors	give	
birth	to	a	new,	live	cell.

•	Exactly	2	or	3	neighbors	
keep	an	existing	cell	alive.

•	Any	other	#	of	neighbors	
and	the	central	cell	dies…

What's	n
ext?

"Grandch
ild	genera

tion"

Evolutionary	rulesGrid	World

For each cell…

•	3	live	neighbors	–	life!	

•	2	live	neighbors	–	same	

•	0,	1,	4,	5,	6,	7,	or	8	live	
neighbors	–	death	

•	computed	all	at	once,	not	cell-
by-cell,	so	the	?	at	left	does	NOT	
come	to	life,	but	?	does!

http://www.math.com/students/wonders/life/life.html

?

Lab	Problem:		Creating	life

next_life_generation(A)

?

0 1 2 3 4 50 1 2 3 4 5

0

1

2

3

4

5

0

1

2

3

4

5

old	generation	is	the	input,	A returns	the	next	generation

Lab	Problem:		Creating	life

?

next_life_generation(A)

	Stable	configurations:

Periodic

"rocks"

"plants"

"animals"

period	3
period	2

Lab	Problem:		Creating	life

Self-propagating

glider Copperhead:	2016

	Stable	configurations:

Periodic

"rocks"

"plants"

"animals"

period	3
period	2

Life	@	HMC?

Self-propagating

glider Copperhead:	2016

Life	@	HMC!

www.youtube.com/watch?v=xP5-iIeKXE8

Life,	universally!

Many	life	configurations	expand	forever…

	What	is	the	largest	amount	of	the	life	
universe	that	can	be	filled	with	cells?

	How	sophisticated	can	Life-structures	get?

www.ibiblio.org/lifepatterns/

"glider"

"Gosper	glider	gun"

Lab	Problem:		Creating	life

