## Thinking in loops

## for

for $x$ in "range (42): print(x)

## while

$$
x=1
$$

$$
\text { while } x<42 \text { : }
$$

print(x)

$$
x+=1
$$

What are the design differences between these two types of Python loops?

## Thinking in loops

## for

## definite iteration

## while

## indefinite iteration

For a known list or \# of iterations

For an unlknown number of iterations

## Homework 8 preview

\#0
\#2 Lots of loops! ASCII Art
\#1~lab The Mandelbrot Set Pi from Pie TTS Securities
When Algorithms Discriminate...


Loopy thinking
(Extra)
(Web extra)

CSS: Cascading Style Sheets

## Pi from Pie?



Pizza is the universal constant, after all.



Estimating $\pi$ from pie?

What if
we just throw darts at this picture?


Pi-design challenge...

Pi from Pie


## Estimating $\pi$ from pie?

(1) Suppose you throw 100 darts at the square (all of them hit the square)
(2) Suppose 80 of the 100 hit inside the circle.
(3) How could you estimate $\pi$ from these throws?

## Hints

How big is a side of the square? its area?

How big is the radius of the circle? its area?

How do these help!?


## Loops: for or while?

pi_one(e)
$e==$ how close to $\pi$ we need to get
pi_two(n)

n == number of darts to throw

Which function will use which kind of loop?

## Loops: for or while?

pi_one (e) $\underset{\text { while }}{ }$
pi_two(n)
$e==$ how close to $\pi$ we need to get
$n==$ number of darts to throw

## Homework 8 preview

\#0
\#1 ~ lab
\#2
\#3
\#4
(Extra) ASCII Art
Lots of loops!
Pi from Pie TTS Securities Nested loops

## Nested loops are familiar, too!

for $m n$ in "range (60):
for $s$ in "range (60): tick()

## Nested loops are familiar, too!



## Nested loops


for $y$ in "range (84):
for $m$ in range(12):
for $d$ in "range $(f(m, y))$ :
for $h$ in "range(24):
for mn in 'range(60):
for $s$ in range(60): tick()

## Nested loops!



Persistence of Memory, S. Dali (MoMA)
for $s$ in range (60): tick()


## Creating 2d structure $\sim$ in ASCII


for row in "range (3): for col in range(4): print("\#")

## Creating 2d structure


for row in "range (3): for col in range (4): print("\#", end='')

## Creating 2d structure

$$
[0,1,2]
$$

for row in ${ }^{\text {listrange (3): }}$
for col in listange (4): print('\#' end=' ')
print()
row =
col =
col =
col =
col =
row =

$$
\begin{aligned}
& \operatorname{col}= \\
& \operatorname{col}= \\
& \operatorname{col}= \\
& \operatorname{col}=
\end{aligned}
$$

row =

$$
\begin{aligned}
& \operatorname{col}= \\
& \operatorname{col}= \\
& \operatorname{col}= \\
& \operatorname{col}=
\end{aligned}
$$

## Creating 2d structure

for row in "range (3): for col in lyange(4):
if col == row:
print('\#',end=' ')
else:
print(' ',end='')
print()

|  | col |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
| 0 | 1 | 2 | 3 |

0

1

2

$$
\begin{aligned}
& \text { row }=\mathbf{0} \\
& \operatorname{col}=\mathbf{0} \\
& \operatorname{col}=\mathbf{1} \\
& \operatorname{col}=\mathbf{2} \\
& \operatorname{col}= \mathbf{3} \\
& \text { row }= \mathbf{1} \\
& \operatorname{col}=\mathbf{0} \\
& \operatorname{col}=\mathbf{1} \\
& \operatorname{col}=\mathbf{2} \\
& \operatorname{col}=3 \\
& \text { row }= \mathbf{2} \\
& \operatorname{col}=\mathbf{0} \\
& \operatorname{col}=\mathbf{1} \\
& \operatorname{col}=\mathbf{2} \\
& \operatorname{col}=\mathbf{3}
\end{aligned}
$$

## Match!

Name(s):

## Try it!

```
for r in range (3): [0,1,2]
    for c in range(6):
        if c > r:
[0,1,2,3,4,5]
A print('#',end=")
    else:
        print(' ',end=")
    print()
```

```
```

for r in range(3):

```
```

for r in range(3):
for c in range(6):
for c in range(6):
if c%2 == 1:
if c%2 == 1:
B print('\#',end=")
B print('\#',end=")
else:
else:
print(' ',end=")
print(' ',end=")
print()

```
```

    print()
    ```
```

```
```

for r in range(3):

```
```

for r in range(3):
for c in range(6):
for c in range(6):
if c%2 == r%2:
if c%2 == r%2:
C print('\#',end=")
C print('\#',end=")
else:
else:
print(' ',end=')
print(' ',end=')
print()

```
```

    print()
    ```
```





3




## Match!

for $r$ in range (3) ${ }^{[0,1,2]}$
for $c$ in range (6): if $c>r$ :
[0,1,2,3,4,5]
A print('\#', end=") else:
print(' ',end=") print()

```
for r in range(3):
    for c in range(6):
        if c%2 == 1:
B print('#',end=")
    else:
        print(' ',end=")
    print()
```

```
for r in range(3):
    for c in range(6):
        if c%2 == r%2:
C print('#',end=")
    else:
        print(' ',end=")
    print()
```






## Nested

## loops: from ASCII Art

That's my type of alien!
 ,DDtt, , ; ;iittjjGGGGii:

## GGKKKKKKKKKKKKEEDDGGGG. <br> KKKKKKKKKKKRKRKKKKKKKKKKGG, <br> KKKKKKKKKKKKKKKKKKKKKKKKKKKKKKff: : <br> : :ttLL <br> .DD: : : : : : : : : : : .ff: : : : : : : : : : : : : : : : : :

 ttKKKKKKKKKKKKKKKKEEKKKRKKKKKKKKKKKKKKKKKKKKKKKKKKKKtt: :: DDKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKEELLtt, :: :: .EEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKEEEEEEEEjj,,: : : : : : . KKKKKKKKKKKKKKRKKKKKKKKKKKKKKKKRKKKEEEEKKKKKKKKKKKKEELL: EEKKKKKKKKKKKKKKKKKKKKKKKKKKKKEEKKKKKKKKKKKKKKRKKKKKKKff ffkKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKE ::EEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKk;
.;;iiGGEEEKKKKKKKKKKKKKKKRKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK:
; ; ; ; ; ; ; ; ;iiiijjLLEEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKK, : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; iiffeEKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKKff :; ;;;;;;;;;;;;;;;;;;;;;;;;;iijjGGEEEEEEKKKKKKKKKKKKKKKKKKKKKDD.
.;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iiiiiiiiiiiittttiiii,...
;;;;,::, ;;;;;;;;;;;;;::, ;;;;;;;;;;;;;;;;;;;;;;
::;;, $\quad$;;;;;;;;; $\quad$;;;;;;;;;;;;;;;;;;;;;:;







- i; ;i;i;i;;;ffKKil ;i;i;
 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ', ;i;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; :;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;i;;;;;;;jj;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;jj;;;;;;;;;;; ;;;;;;;/LLGGLLLfft;;;;;;;;;;;;;;;;;;;;;tffLLLLGG;;;;;;;;;;;;:; ;;;;;;i1LLLLLLLLLGGLLLLLLLLLLLLLLLLLLLGGLLLLLLLLtt;;;;;;;;;;;
;;;;;;;i1ffLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLffii;;;;;;;;;; ; ; ; ; ; ; ; ; ; ;ttjjffLLLLLLLLLLLLLLLfffftt;;;;;;;;;;;;;;;:
 ..iiiiiiiiiiiiii;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;iiiiiiiiiiiii ;;iiiiiiiiiiiiiiii;;;;;;;;;;;;;;;;;;;;;;;iiiiiiiiiiiiiii; , iiiiiiiiiiiiiiiiiiiiiiii; ; ; ; ; ; ; ; ; ; ; ; ;iiiiiiiiiiiiiiiiiiiiii,
 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii,
 ; ;ilifiliiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii, ::,, , , ; ; ; ; ; ; ; ;iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii;;:


## Python and images

from cs5png import *
inputs are width and height
$i m=$ PNGImage $(300,200)$
im.plotPixel( 10, 100 )


## Python and images

from cs5png import *
inputs are width and height
im $=$ PNGImage ( 300,200 )

objects are variables that can contain their own functions, often called methods
im.plotPixel( 10, 100 )

im.saveFile( )
These functions are clearly plotting something - if only I knew what they were up to...

## Imagining Images

## WD $=300$

$\mathrm{HT}=200$
im = PNGImage ( WD, HT )
for row in range (HT): for col in range(WD):
thicker line?
other diagonal?
stripes ?
thicker stripes?
thatching?
if col == row:
im.plotPoint( col, row )
im.saveFile()

Complex \#s!

$$
\sqrt{-1}=i
$$

## In []: $c=-2+1 j$

$$
1 j * 1 j==-1
$$

$$
(-2+1 j) *(-2+1 j)
$$

## In[]: c**2 <br> (3-4j)

## Complex \#s !



## Lab 8: the Mandelbrot Set

Consider an update rule for all complex numbers $\boldsymbol{c}$

$$
\mathrm{z}_{0}=0
$$

$$
z_{n+1}=z_{n}^{2}+c
$$


$z=z * * 2+c$; print(z)
Imaginary axis

## Mandelbrot Definition

Consider an update rule for all complex numbers $\boldsymbol{c}$

$$
\begin{aligned}
& z_{0}=0 \\
& z_{n+1}=z_{n}^{2}+c
\end{aligned}
$$

Imaginary axis

$$
c=.3+.4 j
$$

Small values of c keep the sequence near the origin, $0+0 j$.
$z=z * * 2+c$; print(z)

## Mandelbrot Definition

Consider an update rule for all complex numbers $\boldsymbol{c}$

$$
\begin{aligned}
& z_{0}=0 \\
& z_{n+1}=z_{n}^{2}+c
\end{aligned}
$$

Imaginary axis

```
z = z**2+c ; print(z)
\[
c=.3+.4 j
\]


\section*{Mandelbrot Definition}

Consider an update rule for all complex numbers \(\boldsymbol{c}\)
\[
\begin{aligned}
& z_{0}=0 \\
& z_{n+1}=z_{n}^{2}+c
\end{aligned}
\]

Imaginary axis
\(z=z * * 2+c\); print(z)

\section*{Which c's}
stick around?
\[
c=.3+.4 j
\]

Other values of \(c\) make the sequence head to infinity.

\section*{Lab 8: the Mandelbrot Set}

\section*{Consider an update rule for all complex numbers \(\boldsymbol{c}\)}
\[
\begin{aligned}
& z_{0}=0 \\
& z_{n+1}=z_{n}^{2}+c
\end{aligned}
\]

Click to choose c.
c is -1.21368948247 + -0.16290726817 * 1 j
iter \# 0 : z \(=0.0+0.0 * 1 j\)
iter \# 1 : z = -1.21368948247 + -0.16290726817 * 1j
iter \# 2 : \(z=0.232813899367+0.232530407823\) * \(1 j\)
iter \# \(3: z=-1.21355756129+-0.0546346462374\) * \(\mathbf{~}\)
iter \# 4 : \(z=0.256047527535+-0.0303026920702\) * \(1 j\)
iter \# 5 : z = -1.14904739926 + -0.1784つF-6935 * 1j
iter \# 6 : z = 0.0747849173552. 7964 * 1j
iter \# 7 : z = -1.2691~~~

iter \# 9
iter \# 10
iter \# 11
iter \# 12
iter \# 13
iter \# 14
iter \# 15:
iter \# 16 :
iter \# 17 :
iter \# \(18: \mathbf{z}=0.385222952638+0.125555732355\) * 1j
iter \# \(19: z=-1.08105700116+-0.0661733682935\) * \(1 j\)
iter \# 20 : \(\mathbf{z}=-0.0493841573866+-0.0198329020025\) * \(1 j\)
iter \# \(21: z=-1.21164403147+-0.160948405863 * 1 j\)
iter \# 22 : z = 0.228487387181 + 0.227117082506 * 1j

\section*{Lab 8: the Mandelbrot Set}

\section*{Consider an update rule for all complex numbers \(\boldsymbol{c}\)}
\[
\begin{aligned}
& z_{0}=0 \\
& z_{n+1}=z_{n}^{2}+c
\end{aligned}
\]


\section*{Mandelbrot Set ~ points that stick around}


The shaded area are points that do \(\boldsymbol{n o t}\) diverge for \(\mathbf{z}=\mathbf{z * *} \mathbf{2}+\mathbf{c}\)

\section*{Higher-resolution M. Set}


The black pixels are points that do not diverge for \(\mathbf{z}=\mathbf{z} * * 2+\mathbf{c}\)

\section*{Chaos?}

\section*{Input interpretation:}
\[
\text { plot } \quad y=\sin \left(\frac{1}{x}\right) \quad x=-0.7 \text { to } 0.7
\]


\section*{Input interpretation:}
\[
\text { plot } \quad y=\sin \left(\frac{1}{x}\right) \quad x=0.01 \text { to } 0.012
\]


Complex things always consisted of simple parts...

Before the M. Set, complex things were made of simple parts:

\section*{Chaos!}


This was a "naturally occurring" object where zooming uncovers more detail, not less:


The black pixels are points that do not diverge for \(z=z * * 2+c\)


\section*{Atlas of the M. Set}

Disk 3's
Scepter
Scepter



\section*{Happy Mandelbroting!}
```

