
Thinking	in		loops

What	are	the	design	differences	between	
these	two	types	of	Python	loops?

for x in range(42):

 print(x)

x = 1

while x < 42:

 print(x)

 x += 1

for while

list

Thinking	in		loops

definite	
iteration

indefinite	
iteration

For	a	known	list	or	#	
of	iterations

For	an	unknown	
number	of	iterations

for while

Lots	of	loops!

Homework	8	preview

The	Mandelbrot	Set

TTS	Securities

Pi	from	Pie

When	Algorithms	Discriminate...

ASCII	Art

Loopy	
thinking

(Extra)

#4

#1	~	lab

#3

#0

CSS:	Cascading	Style	Sheets(Web	extra)

#2

Pi	from	Pie?Hw8	Pr3

π
Pizza	is	the	universal	
constant,	after	all…	

Estimating	π	
from	pie?

Hw8	Pr3

What	if	
we	just	
throw	
darts	at	
this	

picture?

(-1,-1)

(1,1)

Pie

Box

(0,0)

Estimating	π	
from	pie?

(-1,-1)

(1,1)

Pie

Box
(1)	Suppose	you	throw	
100	darts	at	the	square										
(all	of	them	hit	the	square)

Hints

How	big	is	a	side	of	the	
square?			its	area?

How	big	is	the	radius	of	
the	circle?			its		area?

How	do	these	help!?

(2)	Suppose	80	of	the	
100	hit	inside	the	circle.

(3)	How	could	you	
estimate	π	from	
these	throws?

(0,0)

Pi-design	challenge... Name(s)	_____________________________

Estimating	π	
from	pie?

(-1,-1)

(1,1)

(1)	Suppose	you	throw	
100	darts	at	the	square										
(all	of	them	hit	the	square)

Hints

How	big	is	a	side	of	the	
square?			its	area?

How	big	is	the	radius	of	
the	circle?			its		area?

How	do	these	help!?

(2)	Suppose	80	of	the	
100	hit	inside	the	circle.

(3)	How	could	you	
estimate	π	from	
these	throws?

Pi-design	challenge... Name(s)	_____________________________

Pie

Box

*

Estimating	
π	from	pie!

Hw8	Pr3

(-1,-1)

(1,1)

Pie

Box

area
area

=

π ~
hits

hits
4

(0,0)
π
4

pi_two(n)

pi_one(e)

n	==	number	of	
darts	to	throw

e	==	how	close	to	π	
we	need	to	get

Which	function	will	use	which	kind	of	loop?

Loops:	for or while?

Loops:	for or while?

pi_two(n)

pi_one(e)

n	==	number	of	
darts	to	throw

e	==	how	close	to	π	
we	need	to	get

for

while

Lots	of	loops!

Homework	8	preview

The	Mandelbrot	Set

TTS	Securities

Pi	from	Pie

When	Algorithms	Discriminate...

ASCII	Art

Not	just	loops...
Nested		loops

(Extra)

#4

#1	~	lab

#3

#0

#2

Nested	loops	are	familiar,	too!

for mn in range(60):
 for s in range(60):
 tick()

list

list

Nested	loops	are	familiar,	too!

So	close!

Nested	loops Life	
clock

for y in range(84):
 for m in range(12):
 for d in range(f(m,y)):
 for h in range(24):
 for mn in range(60):
 for s in range(60):
 tick()

list

list

list

list

list

list

Nested	loops!

for y in range(84):
 for m in range(12):
 for d in range(f(m,y)):
 for h in range(24):
 for mn in range(60):
 for s in range(60):
 tick()

How	nested	loops	can	feel	...
Persistence of Memory, S. Dali (MoMA)

list

list

for mn in range(60):
 for s in range(60):
 tick()

Nested	
loops'	2d	
structure One	hour	~	3600	seconds

mn == 0

mn == 42

mn == 59

s == 0 s == 59

42nd	minute's
59th	second

list

list

hour()

Creating	2d	structure	~	in	ASCII

for row in range(3):
 for col in range(4):
 print("#")

#

Wait!	this	needs	
something	more…

col

ro
w
1 2 30

2

1

0

list

list

Creating	2d	structure

for row in range(3):
 for col in range(4):
 print("#", end='')

#

Hmmm...

col

ro
w
1 2 30

2

1

0

list

list

for row in range(3):

 for col in range(4):
 print('#',end='')

 print()

row =
col =
col =
col =
col =

row =
col =
col =
col =
col =

row =
col =
col =
col =
col =

col

ro
w

1 2 30

2

1

0

[0,1,2]

[0,1,2,3]

Creating	2d	structure

list

list

for row in range(3):
 for col in range(4):
 if col == row:
 print('#',end='')
 else:
 print(' ',end='')
 print()

row =
col =
col =
col =
col =

row =
col =
col =
col =
col =

row =
col =
col =
col =
col =

col

ro
w

1 2 30

2

1

0

Creating	2d	structure

0

1

2

0
1
2
3

0
1
2
3

0
1
2
3

list

list

Let's	take	an	
alien's-eye	view!

 # # # # #
 # # # #
 # # #

1
cols

2 3 4 50

rows
2

1

0

Name(s):	____________________________ Try	it!
for r in range(3):
 for c in range(6):
 if c > r:
 print('#',end='')
 else:
 print(' ',end='')
 print()

for r in range(3):
 for c in range(6):
 if c%2 == 1:
 print('#',end='')
 else:
 print(' ',end='')
 print()

for r in range(3):
 for c in range(6):
 if c%2 == r%2:
 print('#',end='')
 else:
 print(' ',end='')
 print()

1
cols

2 3 4 50

rows
2

1

0

[0,1,2]

[0,1,2,3,4,5]

 # # #

1
cols

2 3 4 50

rows
2

1

0

 # # #
 # # #
 # # #

1
cols

2 3 4 50

rows
2

1

0

Match!
What	code	creates	the	

fourth	one?	

A B C

1 2

3 4

 # # #
 #

1
cols

2 3 40

2

1

 # # #

#

1
cols

2 3 40

2

1

0

*

**

0

*	and	**	are	extra!

 # # # # #
 # # # #
 # # #

1
cols

2 3 4 50

rows
2

1

0

Try	this	on	the	back	f
irst... Quiz

for r in range(3):
 for c in range(6):
 if c > r:
 print('#',end='')
 else:
 print(' ',end='')
 print()

for r in range(3):
 for c in range(6):
 if c%2 == 1:
 print('#',end='')
 else:
 print(' ',end='')
 print()

for r in range(3):
 for c in range(6):
 if c%2 == r%2:
 print('#',end='')
 else:
 print(' ',end='')
 print()

1
cols

2 3 4 50

rows
2

1

0

[0,1,2]

[0,1,2,3,4,5]

 # # #

1
cols

2 3 4 50

rows
2

1

0

 # # #
 # # #
 # # #

1
cols

2 3 4 50

rows
2

1

0

Match!
What	code	creates	the	

fourth	one?	

A B C

1 2

3 4

 # # #
 #

1
cols

2 3 40

2

1

 # # #

#

1
cols

2 3 40

2

1

0

*

**

0

*	and	**	are	extra!

if c+r<4 if c+r<=4 and c>=r

if not (c == r or c+r == 4)

That's	my	type	
of	alien!

Nested	
loops:	from	
ASCII	Art

...		to	"real"	images!

Python	and	images
from cs5png import *

im = PNGImage(300, 200)

inputs are width and height

200

0 0 300

im.plotPixel(10, 100)

(10,100)

(0,0)	is	
in	the	
usual	
place!

Python	and	images

im.plotPixel(10, 100)

im.plotPixel(42, 42, (255,0,0))

im.saveFile() These	functions	are	clearly	
plotting	something	–	if	only	I	
knew	what	they	were	up	to...

from cs5png import *

im = PNGImage(300, 200)

objects	are	variables	that	can	contain	their	
own	functions,	often	called	methods

inputs are width and height

red green bluecol		x row		y

200

0 0

(42,42)

(10,100)

300

Imagining	
Images

from cs5png import *

def testImage():
 """ image demonstration """
 WD = 300
 HT = 200
 im = PNGImage(WD, HT)

 for row in range(HT):
 for col in range(WD):

 if col == row:

 im.plotPoint(col, row)

 im.saveFile()

thicker line?
other diagonal?

stripes ?

thicker stripes?

thatching?

Nothing's	too	
complex	for	

Python!Complex	#s	!

1j * 1j == -1

In[]: c = -2+1j

In[]: c**2
(3-4j)

(-2+1j)*(-2+1j)

i can't	believe	this!

Nothing's	too	
complex	for	

Python!Complex	#s	!

i can't	believe	this!

In[]: c = -2+1j

In[]: c**2
(3-4j)

Real axis

Imaginary axis

3-2

1j

2j
3j

-4j

-2	+	1j

3	-	4j

Lab	8:		the	Mandelbrot	Set

Consider	an	update	rule	
for	all	complex	numbers	c

z0	=	0

zn+1	=	zn2	+	c

Real axis

Imaginary axis

.3

.4j

z = z**2+c ; print(z)

c	=	.3	+	.4j

c

z0

z1
z2

z3

z4

Real axis

Imaginary axis

Mandelbrot	Definition

Consider	an	update	rule	
for	all	complex	numbers	c

z0	=	0

zn+1	=	zn2	+	c

Small	values	of	c	keep	
the	sequence	near	the	

origin,	0+0j.	

z5

some	"stick	around"	~		
oscillate	or	converge

c	=	.3	+	.4j

z = z**2+c ; print(z)

Mandelbrot	Definition

Real axis

Imaginary axis

Other	values	of	c	
make	the	sequence	
head	to	infinity.	

c

Small	values	of	c	keep	
the	sequence	near	the	

origin,	0+0j.	

c

Consider	an	update	rule	
for	all	complex	numbers	c

z0	=	0

zn+1	=	zn2	+	c

z = z**2+c ; print(z)
c	=	3	-	4j

c	=	.3	+	.4j

Which	c's
	

stick	arou
nd?

Mandelbrot	Definition

Real axis

Imaginary axis

Other	values	of	c	
make	the	sequence	
head	to	infinity.	

Benoit	B.	
Mandelbrot	
1924	–		2010c

Small	values	of	c	keep	
the	sequence	near	the	

origin,	0+0j.	

c

Consider	an	update	rule	
for	all	complex	numbers	c

z0	=	0

zn+1	=	zn2	+	c

z = z**2+c ; print(z)
c	=	3	-	4j

c	=	.3	+	.4j

Lab	8:		the	Mandelbrot	Set

Consider	an	update	rule	
for	all	complex	numbers	c

z0	=	0

zn+1	=	zn2	+	c

some	c's	stic
k	

around

Lab	8:		the	Mandelbrot	Set

Consider	an	update	rule	
for	all	complex	numbers	c

z0	=	0

zn+1	=	zn2	+	c

other	c's
	

diverge

Mandelbrot	Set	~	points	that	stick	around

The	shaded	area	are	points	that	do	not	diverge	for			z = z**2 + c

mid	70's	resolution

Higher-resolution	M.	Set

The	black	pixels	are	points	that	do	not	diverge	for			z = z**2 + c

-2 + 1j

-2 - 1j

1 + 1j

1 - 1j

connected

finite	area

∞ perimeter!

Complex	things	always	consisted	of	simple	parts…

Chaos?

Chaos!

http://www.youtube.com/watch?v=0jGaio87u3A

not	self-similar	but	quasi-self-similar

This	was	a	"naturally	occurring"	object	where	
zooming	uncovers	more	detail,	not	less:

Before	the	M.	Set,	complex	things	
were	made	of	simple	parts:

What	are	these	colors?

The	black	pixels	are	points	that	do	not	diverge	for			z = z**2 + c

escape	
velocities!

??

Atlas	of	the	M.	Set

In	the	Seahorse	Valley….

Happy	Mandelbrotting!

www.cs.hmc.edu/~jgrasel/projects http://www.youtube.com/watch?v=0jGaio87u3A

