Lec 18 ~ Classes and Objects...

CS-specific names

CS-specific topics

Also!

class, type, user-defined type, template
object, instance, self, variable, container
method, function

constructor, initializer, __init

__repr__, printer

syntax needed to define a class
syntax needed to create an object
the use of self to refer to a specific object

+ within the definition of a class!

Midterm exams...

All Python variables are objects...
Examples

+ Student class (that we define)
+ strclass (Python-defined)

+ Date class (that we define)

Classes and Objects

An object-oriented programming language allows you
to build your own customized types of variables.

(1) A class 1s a type

(2) An object 1s one such variable.

(instance)

There will typically
be MANY objects
ofa single class.

Classes and Objects

(1) A class1s atype:

(2) An object 1s one such variable.

(instance)

e There will typically
be MANY objects
of a single class.

%

A

e

h

Everything in Python is an object!

Its capabilities depend on its class.

T T

functions type

"methods"”

what's more, you can build your own...

Designing a student class !

contained

name year

Functions contained

« defer(numyrs)
__init__
* and others needed by Python repr

defining our own Student class

class Student: One-page example

a class representing students
the CONSTRUCTOR method (function)
[sets initial data]

f

det init (self, name, yr): «

Student is a class

this is the constructor
self.name = name
self.year = yr

the "REAPER" method (for printing)
[let's change from 2021 to '21]
£ repr_ (self): 1. constructor, init

the not-so-grim reaper: for printing

s = self.name + str(self.year) - i i i
return s 2. its string representation

here's a method of our own

(not one of Python's _ special ones)

3. change things via methods

{

This is the end of the Student class define
Now, let's construct two students: fr and SIr

: use
fr = Student("Frosh A.", 2022) 47 Are ObeCtS @
Student(“Senior B.", 2019) < —]—

sro=

det defer(self, numyrs):

defer for numyrs years
self.year += numyrs

Everything is an object! strings for example:

In : s = str(42)
In : type(s)
<type 'str'> Shows the type of sis str

In : dir(s)

This calls the str constructor.

Shows all of the methods (functions) of s

[' _add__',' class_',' contains__

,'__delattr__",' _doc_','_eq_"'"'_format_''_ ge_ ',

, __getnewargs__', ' getslice_ ' ' gt

'__getattribute__','_ getitem__

,'__hash__'' init_',

len__ "' It "' mod_'' mul_'' ne new

—— R R

__reduce__',' reduce_ex__',

__repr__,

' formatter_field_name_split', ' _formatter_parser’, 'capitalize’, 'center’, 'count’, 'decode’, 'encode’,

rmod"" rmul__

,' __setattr__',' sizeof ',' str ', ' subclasshook ',
'endswith’, 'expandtabs’, 'find’, 'format’, 'index’, 'isalnum’, 'isalpha’, 'isdigit’, 'islower’, 'isspace’,

'istitle’, 'isupper’, 'join’, 'ljust’, 'lower’, 'Istrip’, 'partition’, 'replace’, 'rfind’, 'rindex’, 'rjust’, 'rpartition’,

'rsplit’, 'rstrip’, 'split', 'splitlines’, 'startswith', 'strip’, 'swapcase’, 'title', 'translate’, 'upper’, 'zfill']

Let's try some!

Objects

Like a list, an object is a container, but much more customizable:

(1) Its data elements have names chosen by the programmer.

(2) An object contains its own functions, called methods

(3) In methods, objects refer to themselves as self

(4) Python signals special methods with two underscores:

init is called the constructor; it creates new objects

repr tells Python how to print its objects

I guess we should doubly underscore
L 3 these two methods!

)
_—

11

mont

12

A Date class and object, d

day

2013

year

memory location ~ 42042778

class Date:

structure --
a class that stores and manipulates dates

Date is a user-defined data

def __init_ (self, mo, dy, yr):
"" the constructor for objects of type Date """
self.month = mo
self.day = dy
self.year = yr

def _ _repr__ (self):
“" This method returns a string representation for the
object of type Date that calls it (named self).
It's called by the print statement!
s = (:02d}/{:02d}/{:04d}".format(self.month, self.day,
return s
def islLeapYear(self):

" Returns True if self, the calling object, is
in a leap year; False otherwise. '

% 400

% 100

o 4 ==

if self.year True
if self.year
if self.year

False

recurn

a:
= 9: False
©: return True

return

retcurn

Quiz ~ naming

point each name to its
piece of the code...

class keyword (keyword)

class definition (end)

object creation (4)

methods @)

self.year)

constructor

data member (3)

what prints Dates?

Extra: when's the next leap year? Is2100aLJY.?

d = Date(11,12,2013)
today - Date(11,13,18))
ny - Date(1,1,2019)

nc = Date(1,1,21600)

Your name(s)

Extra: what should ny — today be? What about nc —d?

class Date:

a class that st

def __init_ (self, mo, dy, yr):

ser-defined data structure --

Quiz ~ naming

point each name to its
piece of the code...

nd manipulates dates

" the comsgguctor for obYagts of type Date
self.month = mo
re1r oy TN class keyword (keyword)
self.year ™ L
A class definition (enq)
def _r‘ep.ﬂ‘iself)
" Thig methoc N string represenNMNwon fg”the . .
objecNQF type Dat® - (nanie ObJeCt Creat|0n (4)
A“
: . —
It's called byNgpe print ‘Y’ methods) also __init__
s = "{:02d}/{:02d}/{:04d} N{orE sel-F.d , self.year) and __repr__
def isleapYear(self) :« constructor
""" Returns TrugA”Af self, the calliig objedN_is
in a legg”fyear; False otheryfse. """ data member (3)
if self y€ar 7% 400 == retyfn True
if spAt.year % 100 == 0: pfturn False -
self.year % 4 == 0: turn True What ,UrlntS DateS?
return False 2020
&« Extra: when's the next leap year? 1s2100a LY.} oI
d - Date(11,12,2013) &
today - Date(11,13,18)) Extra: what should nv —today be? What about nc —d?
ny - Date(1,1,2019) E bi dh ' o)
" - pate(1,1,2100) FOUr Objects constructed here... differences!?!.

2.2.1 What years are leap years?

The Gregorian calendar has 97 leap years every 400 years:

Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap year.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years.

In
In

Out:

Date:

def init (self, mo, dy, yr): (constructor)

def repr (self): (for printing)

isLeapYear(self):
""" here it is """
self.year%$400 ==
self.year$100 ==
self.year%4 ==
False

wd = Date(11,12,2013)

wd.isLeapYear ()
False

o o

In
In

Out:

True
False
True

d = Date(1,1,2020)

d.isLeapYear ()
True

hw10prl

You'll create a Date class with

diff (self, d2) > |-
dow (self)

Prof. Benjamin !

no computer required...

methods operators!

What's the dif£?

In

In
In

Out:

In

Out:

In

Out:

In
In

Out:

In

Out:

today = Date(11,13,2018)

: wd = Date(11,12,2013)

today.diff (wd)

1827
today - wd
1827

: wd - today
-1827

eraday = Date(1,1,1)
today.diff (eraday)
737010

today - eraday
737010

method

operator

operator

method

This gives
me pause

operator

Where's the dow?

In
In

In

Out:

In

Out:

In

Out:

In

Out:

In

Out:

The dow looks
sml = Date(10,28,1929) downtome! S
Date (10,19,1987) =

sm2

sml .dow () .
'Monday uses a named object...

sm2 .dow () ,
'Monday ' uses a named object...

Date(1,1,1) .dow()

/
'Monday ' unnamed!

Date(1,1,2100) .dow ()

|
'Friday' unnamed !

Date (10,10,2010) .dow()
'Sunday' popular!

Date:

UL LI blueprint (class) for ObjeCtS The Date

that represent calendar days

o class

This is the start of a new type called Date
It begins with the keyword class

This is the constructor for Date objects
As is typical, it assigns input data to the data members.
__init (self, mo, dy, yr):
""" the Date constructor """
self.month = mo

self.day = dy
self.year = yr

These are data members —
they are the information
inside every Date object.

D a te This is a class. It is a user-defined datatype that
you'll finish building in Lab 10 next week...

Seea DBrint State
In : d = Date(11,12,2013) Constructor! Ol s is oot
In : d.isLeapYear()
False d contains data
members named day,

month, and year
>>> d
1 1 / 1 2 / 2 O 1 3 The repr! the representation of an object of type Date
>>> d.1i sLeapYear () The iIsLeapYear method returns True or False.

How does it know what year to check?

False

Date:

UL LI blueprint (class) for ObjeCtS The Date

that represent calendar days

__init (self, mo, dy, yr): Class

""" the Date constructor """

self month = mo

self.day = dy

self.year = yr

__repr (self):

""" used for printing Dates """

S = "{ 02d}/{ 02d}/{ 04d} " format(self.month, self.day, self.year)

return s

A

Why is everything
so far away?!

—

This is the repr for Date objects
It tells Python how to print these objects.

Why self instead of d ?

self is the variable calling a method

d = Date(11,12,2013)
print d
11/12/2013

d.isLeapYear ()

False These methods need
access to the object that
nd = Date(1,1,2020) calls them: it's self
print nd
01/01/2020

nd.isLeapYear ()

True

Problems with ==

>>> wd = Date(11,12,2013)
>>> wd
11/12/2013

this constructs a different Date

>>> wd2 = Date(11,12,2013}//
>>> wd2
11/12/2013

o> wd ez w2 Python objects are
False handled by reference...
== compares references!

How can this be False ?

Two Date objects:

wd wd2

/ J—
Tl Gl

month day year month day year

. DN /

memory location ~ 42042778 memory location ~ 42042742

== compares memory locations, not contents

Date:

equals/
"o retu ..o

represeni OW n
False oth O u r
self.year : -
self.month ua\‘ty
self.day == e q
return

e festel

To use this, write wd.equals (wd2) B

Date:

equals

equals (self, d2):

""" returns True 1f they
represent the same date;
False otherwise

self.year == d2.year \
self .month == d2.month \
self.day == d2.day:

return True

return False

which goes where?

To use this, write wd.equals (wd2) -

Solution: equals

>>> wd = Date(11,12,2013)
>>> wd
11/12/2013
this constructs a different Date object,
>>> wd2 = Date(11,12,2013) / Putwith the same mo/dy/yr
>>> wd2
11/12/2013

>>> wd.equals (wd2) .equals compares mo/dy/yr -
True because we asked it to!

But who is this
convenient for?! -

°
e

Date:

&4

L==k! Thisis T== C==L!

i
eq (self, d2): -8

""" returns True if thez
represent the same date;
False otherwise

wiwn

self.year == d2.year \
self.month == d2.month \
self.day == d2.day:

return True .
redefined for our

return False convenience!

To use this, write d == d2

DIY operators ...

eq_ (self, other) defines the equality operator, ==

ne (self, other) defines the inequality operator, !=
__It_ (self, other) defines the less-than operator, <

gt (self, other) defines the greater-than operator, >

le (self, other) defines the less-or-equal-to operator, <=
__ge (self, other) defines the gr.-or-equal-to operator, >=

__add__ (self, other) defines the addition operator, +
__sub__(self, other) defines the subtraction operator, -

... and many more! Use dir(")

there are two Under' | should ur;derscore this unusual syntax!
scores on each side here -

/ 1t (self, other)
More operators! Ye (self other)
e self, other
Booleans q__(self)
: : ne__ (self, other)
arithmetic
gt__ (self, other)
ge__ (self, other)
__add__(self, other)1 < __iadd__(self other) +=
__sub__(self, other) — __isub__(self other) — =
__mul__ (self, other) * __imul__(self other)] s =
matmu%(self . other) @ __imatmul__ (self, other) @ =
__truediv__(self, other)

__itruediv__ (self, other)

__floordiv__(self, other) __ifloordiv__(self other)

mod___(self, other i in-place
:divac(i_(self, o)ther) _:.Lmod_(sel f, other) aritlll)m etic
__pow___(self, other[, modulo)) __ipow__(self, other|, moduio])
__1shift__(self other) __ilshift__(self, other)
__rshift__(self other) __irshift__(self, other)
__and__ (self, other) __iand__(self, other)
__xor__ (self, other) __ixor__(self, other)

__or__(self, other) ior__ (self, other)

https://docs.python.org/3/reference/datamodel.html#special-method-names

Add these to your Date class!

yesterday (self)
tomorrow (self)
addNDays (self, N)
subNDays (self, N)
isBefore (self, d2)
isAfter(self, d2)
diff (self, d2)

dow (self)

abs?

Prof. Benjamin !

no computer required...

and use your Date class to
analyze our calendar a bit...

isBefore
Date:

isBefore (self, d2):
""" True if self is before d2, else False """

self.year < d2.year:
return True

self.month < d2.month:
return True

self.day < d2.day:
return True

return False

Date(12,31,1999).1isBefore(Date(11,13,2018))

Date(11,13,2018).1isBefore(Date(12,31,1999))

Why doesn't this function work correctly?!

isBefore
Date:

isBefore (self, d2):
""" True if self is before d2, else False """

self.year < d2.year:
True

self.month < d2.month and self.year == d2.year :
True

self.day < d2.day and self.year == d2.year \
and self.month == d2.month .
True

False

[<3 Elf! But what
about EIif? t

A

I want LESS !

Date:

1t (self, d2):

""" if self is before d2, this should
return True,; else False """

self.isBefore(d2) == True:
return True

return False

1t <

Date:

‘__lt;_(self, d2) :
""" this is less than most code!
return self.isBefore (d2)

LESS'!

(:

LESS'!

it <

Date:

‘__lt;_(self, d2) :
""" this is less than most code! """
return self.isBefore (d2)

gt >

gt (self, d2):

""" this is less than most code! """
return .isBefore ()

(:

The 2 most essential methods

wd = Date (11 , 12 , 2013) construct with the

CONSTRUCTOR ...

print wd
11/12/2013

print uses __repr__

the tomoOrrow method returns nothing 4 4= 1

Wd . tomorrow () at all. Is it doing anything?

print wd
~——— wd has changed!
11/13/2013
wd.yesterda
Y Y () yesterday is pretty much just like d =1
print wd tomorrow (is this a good thing!?)

11/12/2013 T

Some methods return a value; others change
the object that call it!

Date: Don't hand this in... Use for hw10pr1 next week!

tomorrow (self) :
""" moves the self date ahead 1 day """

pimMm = [0,31,28,31,30,31,30,31,31,30,31,30,31]

DIM looks pretty
) bright to me! o
-— first, add 1 to POn
self.day +=1 Colf day °0"

test if we have gone
"out of bounds!"

self.day
self .month

then, adjust the month and
year, but only as needed
Use another if!

Don't return anything.
This CHANGES the date
How could we make this work for leap years, too? object that calls it.

Date: él]%?%

==

tomorrow (self) :
""" moves the self date ahead 1 day """

better as a variable!
piMm = [0,31,fdays,31,30,31,30,31,31,30,31,30,31]
self.day +=1 # add 1 to the day!

self.day > DIM[self.month]: # check day
self .month +=1
self.day =1

self .month > 12: # check month
self.year +=1
self . month =1

Date:

/L ///@

tomorrow (self) : ==
""" moves the self date ahead 1 day """

~if self.isleapYear () == True: fdays = 29
else: fdays = 28

DIM = [0,31, fdays,31,30,31,30,31,31,30,31,30,31]
self.day += 1 # add 1 to the day!

self.day > DIM[self.month]: # check day
self.month += 1
self.day =1

self . month > 12: # check month
self.year += 1

self .month =1

Date: él]%?%

==
tomorrow (self) :
""" moves the self date ahead 1 day """
fdays = 28 + self.islLeapYear () # What ?! the "Luke ricyn

bDIM = [0,31, fdays,31,30,31,30,31,31,30,31,30,31]
self.day +=1 # add 1 to the day!

self.day > DIM[self.month]: # check day
self . month += 1
self.day =1

self .month > 12: # check month

self.year +=1
self . month =1

Don't hand this in... Use for hw10prl1 this week!
Date:

yesterday (self) :
""" moves the self date backwards 1 day """

fdays = 28 + self.isLeapYear() # Yay!

piMm = [0,31, fdays,31,30,31,30,31,31,30,31,30,31]
self.day =1 # sub 1 from the day!

self.day < 1: # check day
self .month -=1
self.day = DIM[self .month-1]

self.month > 12: #
check month

self.year +=1

self .month =1

For lab: how will "wrap-around” work in this case? What cases do we need to worry about?!

