Python features, motivated by VPython...



Python features, motivated by VPython...

Tuples are similar to lists, but they're parenthesized:

T = (4,2) x = (1,0,0)

example of a two-element tuple named T and a three-element tuple named x

f(x=3, y=17): examples of default and
10*x + y named inputs ina

function definition



TupleS! Lists that use parentheses

are called tuples:

T= (4, 2 )

(4, 2)
Tuples are immutable
T[O] lists: you can't change
4 their elements...
...but you can always
T[O] T 42 redefine the whole
Error: variable, if you want!
T = ('a' + Tuples are more memory + time efficient

+ Tuples can be dictionary keys: lists can't be
- But you can't change tuples’ elements...



Default - and named - inputs!

Functions can have default input values and can take named inputs

def f£(x=3, y=17):
return 10*x + y

example of an ordinary f (4 , 2)

function call — totally OK

example of f ( )

default inputs
example using only
one default input f ( 1 )

example of a f (y=1 )

named input



f(x=2, y=11):

x + 3 *y Input your name(s) =
£(3,1) £0
£(3) f(y=4,x=2)

What will these function calls to £ return?

What call to £ returns the string 'Lalalalala’ ?

These are tuples - they work like lists! What iS f( ()’ (1,0) ) ?

What is the shortest call to £ returning 427

it's only four characters, too!

Extra... what does this return? y=60; x=-6; f(y=x,x=y)

Named inputs

None of the above are 42!

but they all share a factor with it! - Eli B. '17



def £ (x=2, y=11): Named inputs

return x + 3*y
£(3,1) 6 £() 35
£ (3) 36 f (y=4,x=2)

What will these function calls to £ return? = None of the above are 42!

but they all share a factor with it! - Eli B. '17

What call to £ returns the string 'Lalalalala’ ? f('Lala’,"1a")

These are tuples - they work like lists! What IS f( ()’ (1,0) ) 7 (1,0,1,9,1,9)

What is the shortest call to £ returning 427

it's only four characters, too!

Extra... what does this return? y=60; x=-6; f(y=x,x=y)



VPYthon ~ GlOWS Cr‘lpt! www.glowscript.org/

stonehenge.py

built by and for
physicists to simplify
3d simulations

lots of available
classes, objects and
methods in its API




Using GlowScript / vPython... o

GlowScript is an easy-to-use, powerful environment for creating 3D animations
and publishing them on the web. Here at glowscript.org, you can write and run
GlowScript programs right in your browser, store them in the cloud for free,

and easily share them with others. Thanks to the RapydScript-NG compiler,
you can use VPython here.

New version 2.6: Can resize a canvas; new graph titles
The Help provides full documentation.
You are signed in as zdodds and your programs are here.

Your files will be saved here, but it is a good idea to keep your own copies of
any important files.

examples_,_ Example programs | Forum

Documentation
This is for later on. (The documentation links for the browser-based ° dOCU.mentatlon El=ls

« http://www.glowscript.org/ - home page, where you login and access your programs
o http://www.glowscript.org/docs/GlowScriptDocs/index.html - docs for each object, the
» http://www.glowscript.org/#/user/GlowScriptDemos/folder/Examples/ - examples (you



API .. stands for Application Programming Interface

a programming description of how to use a software library

A demo of vPython's API:

What's box?
# the simplest possible vpython program: What's coloxr?
box( color = vector(1, 0.5, 0) ) What's vector?
A Getting used to everything!

try changing the color: the components are
red, green, blue eachfrom0.0to 1.0

# then, add a second parameter: size=vector(2.0,1.0,0.1)
#  the order of those three #s: Length, Height, Width

# then, a third parameter: axis=vector(2,5,1)

| H the order of those three #s: x, y, z ' hAP

about APIs! ol

vPython example API call(s) =




API

“— C @ www.glowscript.org/docs/GlowScriptDocs/primitives.htm

BE CSS SubSite [3 JSBoxCars [ cs3

i oore

Home  Pictures of 3D objects

Choose a 3D object v || Work with 3D objects v | Canvases/Events v

The GlowScript 3D Objects (click for details)

.. stands for Application Programming Interface

arrow box clone

compound cone

label

This is a label

points

pyramid

extrusion

*
=

cylinder

sphere

canvas

A display region

shapes * docs!

vertex/triangle/quad

frame

Group objects together




API .. stands for Application Programming Interface

box

IHere is how to create a box object:

mybox = box( pos=vec (x0,y0,z0),
size=vec(L,H,W) )

The given position is in the center of the box, at (x0, y0, z0). This is different
from cylinder, whose pos attribute is at one end of the cylinder. Just as with a
cylinder, we can refer to the individual vector components of the box as
mybox_pos.x, mybox.pos.y, and mybox.posz. For this box, we have
mybox.axis = vec(1, 0, 0). Note that the axis of a box is just like the axis of a
cylinder.

For a box that isn't aligned with the coordinate axes, additional issues come
into play. The orientation of the length of the box is given by the axis:

mybox = box( y
pos=vec (x0,vy0,z0), up
axis=vec(a,b,c),
size=vec (L, H,W) )

The axis attribute gives a direction for the

length of the box, and the length, height,
and width of the box are given as before.

You can rotate the box around its own axis |enmh

by changing which way is "up" for the box,

by specifying an up attribute for the box X
that is different from the up vector of the Z

B e T



vectors b.pos, b.vel,... are vectors

b.vel = vector(1,0,0)

velx veTI.y VTZ Ejgggnents
b ) pOS = vector (O / O / O) scalar multiplication
b.pos = b.pos + b.vel*0.2

component-by-component
addition

let's compare with tuples...



vectors act like "arrows"

The vector Object

The vector object is not a displayable object but is a powerful aid to 3D computations.

vector (x,vy, z)

Returns a vector object with the given components, which are made to be floating-point (that is, 3
Is converted to 3.0).

Vectors can be added or subtracted from each other, or multiplied by an ordinary number. For
example,

vl = vector(l,2,3)

v2 = vector(10,20,30)

print (vl+v2) # displays <1 22 33>
print (2*vl) # displays <2 4 6>

You can refer to individual components of a vector:

v2.xis 10, v2yis 20,v2.zis 30

It is okay to make a vector from a vector: vector(v2) is still vector(10,20.30).
The form vector(10,12) is shorthand for vector(10.12.0).

A vector is a Python sequence, so v2.x Is the same as v2[0], v2.y is the same as v2[1], and v2.z is
the same as v2[2].

Vector functions

The following functions are available for working with vectors:

www.glowscript.org/docs/GlowScriptDocs/vector.html



vectors act like "arrows"

but arrows are arrows!

# if the ball ventures too far, restart with random velocity
if mag(ball.pos - origin) > 10.0:  # mag finds magnitude of a vector

ball.pos = vector(0,0,0) # reset the ball.pos (position)
ball.vel = 4.2*vector.random() # set arandom velocity
ball.vel.y =0.0 # with no y component (no vertical)

print("velocity is now:", ball.vel)



Vector functions
The following functions are available for working with vectors:
mag(A) = A.mag = |A|, the magnitude of a vector

mag2(A) = A.mag2 = |A|*|A|, the vector's magnitude squared

norm(A) = A.norm() = A/|A|, a unit vector in the direction of the vector
hat(A) = A.hat = A/|A|, a unit vector in the direction of the vector; an
alternative to A.norm(), based on the fact that unit vectors are customarily
written in the form €, with a "hat" over the vector

dot(A,B) = A.dot(B) = A dot B, the scalar dot product between two vectors

cross(A,B) = A.cross(B), the vector cross product between two vectors

diff_angle(A,B) = A.diff_angle(B), the angle between two vectors, In
radians

proj(A,B) = A.proj(B) = dot(A,norm(B))*norm(B), the vector projection of A
along B

comp(A,B) = A.comp(B) = dot(A,norm(B)). the scalar projection of A along
B

A.equals(B) is True if A and B have the same components (which means
that they have the same magnitude and the same direction)

vec.random() produces a vector each of whose components are random
numbers in the range -1 to +1

vectors!

lots of support...
(don't write your own)



www.glowscript.org/docs/GlowScriptDocs/index.html

Documentation!

Rotating a vector
There is a function for rotating a vector:

v2 = rotate(vl, angle=a, axis=vec(x,v,z))

The angle must be in radians. The default axis is (0,0.1), for a rotation
counterclockwise in the xy plane around the z axis. There is no origin for
rotating a vector. You can also wrnte vZ2 = v1.rotate(angle=theta.
axis=vec(1,1,1)). There is also a rotate capability for objects.

The JavaScript versions are v2 = rotate(v1, {angle:a, axis=vec(x.y,z}) and v2

= v1.rotate({angle:a, axis=vec(x,y.z}).

" There are functions for converting between degrees and radians, where )
there are 2*pi radians in 360 degrees:

radians (360) is equivalent to 2*pi

- degrees (2*pi) is equivalent to 360 )




vPython: Linear + Spherical collisions...

I
[HEY
o

At least some of the game needs to be about X
detecting collisions and changing velocities

Line ~ wall at x=10

# How to bounce?
# What else to do?




Spherical collisions

Ar.vel

0 Zeroth approximation:
Stop q. Undo any overlap.

Make r.vel = q.vel.

A 1 First approximation:
q Stop q. Undo any overlap.
Compute d = r.pos - q.pos
q.vel Make r.vel =d

2 Second approximation:

Same as first, but

&BR Reality is just three eyes away! Make q.vel =d*, at 90°from d

A



Spherical collisions

0 Zeroth approximation:
r.vel
Stop q. Undo any overlap.

Make r.vel = q.vel.

1 First approximation:
q Stop q. Undo any overlap.
Compute d = r.pos - q.pos
q.vel Make r.vel =d

2 Second approximation:

Same as first, but

&BR Reality is just two eyes away! Make q.vel =d*, at 90°from d

A



Spherical collisions

0 Zeroth approximation:
r.vel
Stop q. Undo any overlap.

Make r.vel = q.vel.

1 First approximation:

Stop q. Undo any overlap.

Compute d = r.pos - q.pos
old q.vel Make r.vel =d

2 Second approximation:

Same as first, but

&R Reality is just one eye away! Make q.vel =d*, at 90°from d

N——



VP O O l — p hys i C S ? http://en.wikipedia.org/wiki/Elastic_collision

'\V Elastic collision - Wikipediz + (| — -
€ C'  © enwikipedia.org/wiki/Elastic_collision N
B home EH css EH css0 B ACM P gmail KoolAid 4% trac (D) REUIRB D3 SI-SI [ /GMbotSet (CJ Other bookmarks

s -+ Mo

Therefore, the classical calculation only holds true when the speed of both colliding bodies is much lower than the speed
of light (about 300 million m/s).

Two- and three-dimensional [edit]

For the case of two colliding bodies in two-dimensions, the overall velocity of each body must be split into two
perpendicular velocities: one tangent to the common normal surfaces of the colliding bodies at the point of contact, the
other along the line of collision. Since the collision only imparts force along the line of collision, the velocities that are
tangent to the point of collision do not change. The velocities along the line of collision can then be used in the same
equations as a one-dimensional collision. The final velocities can then be calculated from the two new component
velocities and will depend on the point of collision. Studies of two-dimensional collisions are conducted for many bodies

in the framework of a two-dimensional gas.

Two-dimensional elastic collision

equations below...

~

m




hwllprl goals

(0) Try out VPython: Get your bearings (axes!)

(1) Make guided changes to the starter code...

(2) Expand your walls and wall-collisions...

-

\_

(3) Improve your interaction/game!

J

(4) Optional: add scoring, enemies, or a moving

target, hoops, traps, holes, etc.



Collisions... |

point-to-line collisions

# if the ball hits wallA

if ball.pos.z < wallA.pos.z: # hit - check for z
ball.pos.z = wallA.pos.z # bring back into bounds
ball.vel.z *= -1.0 # reverse the z velocity

# if the ball hits wallB

if ball.pos.x < wallB.pos.x: # hit - check for x
ball.pos.x = wallB.pos.x # bring back into bounds
ball.vel.x *= -1.0 # reverse the x velocity

# if the ball collides with the alien, give a vertical velocity
if mag( ball.pos - alien.pos ) < 1.0:

print("To infinity and beyond!")

alien.vel = vector(0,1,0) point-to-point collisions



Home  Pictures of 3D objects

Choose a 3D object v || Work with 3D objects v | Canvases/Events v

compound

The compound object lets you group objects together and manage them as
though they were one object, by specifying in the usual way pos, color, size
(and length, width, height), axis, up, opacity, shininess, emissive, and
texture. Moreover, the display of a complicated compound object is faster
than displaying the individual objects one at a time. (In GlowScript version
2.1 the details were somewhat different.)

The object shown above is a compound of a cylinder and a box:

handle = cylinder( size=vec(l,.2,.2),
color=vec(0.72,0.42,0) )

head = box( size=vec(.2,.6,.2),
pos=vec(1.1,0,0),
color=color.gray(.6) )

hammer = compound([handle, head])
hammer.axis = vec(1,1,0)

The size of the object: After creating the compound named "hammer”,
hammer.size represents the size of the bounding box of the object.

compound



Home  Pictures of 3D objects

compound

Choose a 3D object v || Work with 3D objects v || Canvases/Events v

)

compound

The compound object lets you group objects together and manage them as
though they were one object, by specifying in the usual way pos, color, size
(and length, width, height), axis, up, opacity, shininess, emissive, and
texture. Moreover, the display of a complicated compound object is faster

than displaying the individual objects one at a time. (In GlowScript version What's What here?

2.1 the details were somewhat different.)

The object shown above is a compound of a cylinder and a box:

alien_body = sphere( size=1.0*vector(1,1,1), pos=vector(0,0,0), color=color.green )
alien_eyel = sphere( size=0.3*vector(1,1,1), pos=.42*vector(.7,.5,.2), color=color.white )
alien_eye2 = sphere( size=0.3*vector(1,1,1), pos=.42*vector(.2,.5,.7), color=color.white )
alien_hat = cylinder( pos=0.42*vector(0,.9,-.2), axis=vector(.02,.2,-.02),

size=vector(0.2,0.7,0.7), color=color.magenta)
alien_objects = [alien_body, alien_eyel, alien_eye2, alien_hat]

com_alien = compound( alien_objects, pos=starting_position )



# +++ start of EVENT_HANDLING section - separate functions for
# keypresses and mouse clicks...

def keydown_fun(event):
""" function called with each key pressed """
ball.color = randcolor()
key = chr(event.which) random change of the sphere's color
ri = randint( 0, 10 )
print("key:", key, ri) # prints the key pressed - caps only...

printing is great

amt =0.42 # "strength" of the keypress's velocity changes for debugging!

if key in "WI&': # all capitals!

ball.vel = ball.vel + vector(0,0,-amt) s -~ h
if key in 'A%)" variables make it easy to change

behavior across many lines of code

ball.vel = ball.vel + vector(-amt,0,0) R
(here, all four motion directions)

if key in 'S(K":

ball.vel = ball.vel + vector(0,0,amt)
if key in "D'L";

ball.vel = ball.vel + vector(amt,0,0) key presses nan

if keyin"":
ball.vel = vector(0,0,0) # reset! via the spacebar
ball.pos = vector(0,0,0) ;;;;;""" ~ have shortcuts to make your
game easier -- or reset it!



e GlowScript / vPython examples...

10 by 10 by 10= 1000 rotating cubes

59.1 renders/s * 2.1 ms/render = 123.3 ms rendering/s

Click a box to turn it white

Widgets (buttons, etc.) Edit this program

Pause Iﬂlil
) Surrez]

Theoretical and averaged speed distributions (meters/sec). ehenge
Initially all atoms have the same speed, but collisions 2
change the speeds of the colliding atoms. One of the atoms is i
marked and leaves a trail so you can follow its path. '_ ‘
10
8 ‘ —
Vary the rotation speed: Hey.’ Isee What’S
1.50 radians/s . /
Cyan Choose an object v happenlng here'
® Red Transparent

1000 1500 2000 2500 3000

Nambe- cf atoms




