
Python	features,	motivated	by	VPython…

Python	features,	motivated	by	VPython…

Tuples	are	similar	to	lists,	but	they're	parenthesized:

T = (4,2)

example	of	a	two-element	tuple	named	T	and	a	three-element	tuple	named	x

x = (1,0,0)

def f(x=3, y=17):
 return 10*x + y

examples	of	default	and	
named	inputs	in	a	

function	definition	

not vectors!

Tuples! Lists	that	use	parentheses	
are	called	tuples:

+	Tuples	are	more	memory	+	time	efficient
+	Tuples	can	be	dictionary	keys:		lists	can't	be	
-		But	you	can't	change	tuples'	elements...

T = (4, 2)

T
(4, 2)

T[0]
4

T[0] = 42
Error!

T = ('a',2,'z')

Tuples	are	immutable	
lists:	you	can't	change	

their	elements...
		

...but	you	can	always	
redefine	the	whole	
variable,	if	you	want!

def f(x=3, y=17):
 return 10*x + y

f(y=1)example	of	a	
named	input

f()

f(1)

Functions	can	have	default	input	values	and	can	take	named	inputs

example	of	
default	inputs

example	using	only	
one	default	input

f(4,2)example	of	an	ordinary	
function	call	–	totally	OK

Default	–	and	named	–	inputs!

Named	inputs

f(3,1) f()

f(3) f(y=4,x=2)

Input	your	name(s)	=		___________________________

What	will	these	function	calls	to	f	return? None		of	the	above	are	42!

What	call	to	f	returns	the	string		'Lalalalala'	?											

What	is	the	shortest	call	to	f	returning	42?

Extra…		what	does	this	return?				y	=	60;			x	=	-6;			f(y=x,x=y)

What		is		f((),		(1,0))	?		These	are	tuples	–	they	work	like	lists!

it's		only	four	characters,	too!

def f(x=2, y=11):
 return x + 3*y

but	they	all	share	a	factor	with	it!		-	Eli	B.	'17

42

Named	inputs
def f(x=2, y=11):
 return x + 3*y

f(3,1) f()

f(3) f(y=4,x=2)

What	will	these	function	calls	to	f	return? None		of	the	above	are	42!

Try	this	on	the	back
	page	first…

What	call	to	f	returns	the	string		'Lalalalala'	?											

What	is	the	shortest	call	to	f	returning	42?

What		is		f((),		(1,0))	?		These	are	tuples	–	they	work	like	lists!

it's		only	four	characters,	too!

Extra…		what	does	this	return?				y	=	60;			x	=	-6;			f(y=x,x=y)

6
36

35
14

f('Lala','la')

(1,0,1,0,1,0)

14
42

but	they	all	share	a	factor	with	it!		-	Eli	B.	'17

VPython	~	GlowScript!

built	by	and	for	
physicists	to	simplify	

3d	simulations

lots	of	available	
classes,	objects	and	
methods	in	its	API

www.glowscript.org/

stonehenge.py

bounce.py

Where	were	we...	?

Using	GlowScript	/	vPython...

documentation…

examples...

A	demo	of	vPython's	API:

I'm	hAPI	
about	APIs!

API ...	stands	for	Application	Programming	Interface

a	programming	description	of	how	to	use	a	software	library

#	the	simplest	possible	vpython	program:	
box(color	=	vector(1,	0.5,	0))	

#	try	changing	the	color:	the	components	are	
#			red,	green,	blue				each	from	0.0	to	1.0	

#	then,	add	a	second	parameter:			size=vector(2.0,1.0,0.1)	
#							the	order	of	those	three	#s:	Length,	Height,	Width	

#	then,	a	third	parameter:		axis=vector(2,5,1)	
#							the	order	of	those	three	#s:	x,	y,	z

What's	box?
What's	color?	
What's	vector?	
Getting	used	to	everything!

vPython	example	API	call(s)

API ...	stands	for	Application	Programming	Interface

shapes	+	docs!
constr

uctors
	+	

metho
ds!

cool	stuff...

API ...	stands	for	Application	Programming	Interface

constructo
r	+	

default	

argument
s;	

data!

vectors b.pos,	b.vel,…		are	vectors

b.vel = vector(1,0,0)

b.pos = b.pos + b.vel*0.2

component-by-component	
addition

vel.x
vel.y

vel.z named	
components

scalar	multiplicationb.pos = vector(0,0,0)

let's	compare	with	tuples…

vectors act	like	"arrows"

www.glowscript.org/docs/GlowScriptDocs/vector.html

vectors act	like	"arrows"

				#	if	the	ball	ventures	too	far,	restart	with	random	velocity	
				if	mag(ball.pos	-	origin)	>	10.0:						#	mag	finds	magnitude	of	a	vector	
								ball.pos	=	vector(0,0,0)															#	reset	the	ball.pos	(position)	
								ball.vel	=	4.2*vector.random()					#	set	a	random	velocity	
								ball.vel.y	=	0.0																														#	with	no	y	component	(no	vertical)	
								print("velocity	is	now:",	ball.vel)

but	arrows	are	arrows!

lots	of	support…	
(don't	write	your	own)

vectors!

Documentation!www.glowscript.org/docs/GlowScriptDocs/index.html

vPython:		Linear	+	Spherical	collisions...

At	least	some	of	the	game	needs	to	be	about	
detecting	collisions		and	changing	velocities

x	=	10

Line	~	wall	at	x=10

How	to	bounce?

What	else	to	do?

+x

0		Zeroth	approximation:
Stop	q.		Undo	any	overlap.
Make	r.vel	=	q.vel.

q

r

q.vel

Spherical	collisions

Reality	is	just	three	eyes	away!

r.vel

1		First	approximation:
Stop	q.		Undo	any	overlap.	

Compute	d	=	r.pos	–	q.pos	

Make	r.vel	=	d

2			Second	approximation:
Same	as	first,	but
Make	q.vel	=	d ⊥ ,	at	90° from	d

q

r

q.vel

d

Reality	is	just	two	eyes	away!

r.vel

Spherical	collisions
0		Zeroth	approximation:

Stop	q.		Undo	any	overlap.
Make	r.vel	=	q.vel.

1		First	approximation:
Stop	q.		Undo	any	overlap.	

Compute	d	=	r.pos	–	q.pos	

Make	r.vel	=	d

2			Second	approximation:
Same	as	first,	but
Make	q.vel	=	d ⊥ ,	at	90° from	d

q

r

old	q.vel

dd⊥

Reality	is	just	one	eye	away!

r.vel
new	
q.vel

Spherical	collisions
0		Zeroth	approximation:

Stop	q.		Undo	any	overlap.
Make	r.vel	=	q.vel.

1		First	approximation:
Stop	q.		Undo	any	overlap.	

Compute	d	=	r.pos	–	q.pos	

Make	r.vel	=	d

2			Second	approximation:
Same	as	first,	but
Make	q.vel	=	d ⊥ ,	at	90° from	d

vPool	–	physics? http://en.wikipedia.org/wiki/Elastic_collision

equations	below...

(0)	Try	out	VPython:				Get	your	bearings	(axes!)

(1)	Make	guided	changes	to	the	starter	code...

(2)	Expand	your	walls	and	wall-collisions…

	 (3)	Improve	your	interaction/game!

(4)	Optional:	add	scoring,	enemies,	or		a	moving	
target,	hoops,	traps,	holes,	etc.

hw11pr1	goals

Collisions…

				#	if	the	ball	hits	wallA	
				if	ball.pos.z	<	wallA.pos.z:					#	hit	-	check	for	z	
								ball.pos.z	=	wallA.pos.z						#	bring	back	into	bounds	
								ball.vel.z	*=	-1.0																			#	reverse	the	z	velocity	
									
				#	if	the	ball	hits	wallB	
				if	ball.pos.x	<	wallB.pos.x:						#	hit	-	check	for	x	
								ball.pos.x	=	wallB.pos.x							#	bring	back	into	bounds	
								ball.vel.x	*=	-1.0																					#	reverse	the	x	velocity	
									
				#	if	the	ball	collides	with	the	alien,	give	a	vertical	velocity	
				if	mag(ball.pos	-	alien.pos)	<	1.0:	
								print("To	infinity	and	beyond!")	
								alien.vel	=	vector(0,1,0) point-to-point	collisions

point-to-line	collisions

compound

compound

What's	what	here?

				alien_body	=	sphere(size=1.0*vector(1,1,1),	pos=vector(0,0,0),	color=color.green)	
				alien_eye1	=	sphere(size=0.3*vector(1,1,1),	pos=.42*vector(.7,.5,.2),	color=color.white)	
				alien_eye2	=	sphere(size=0.3*vector(1,1,1),	pos=.42*vector(.2,.5,.7),	color=color.white)	
				alien_hat	=	cylinder(pos=0.42*vector(0,.9,-.2),	axis=vector(.02,.2,-.02),		
	 	 	 	 size=vector(0.2,0.7,0.7),	color=color.magenta)	
				alien_objects	=	[alien_body,	alien_eye1,	alien_eye2,	alien_hat]			

				com_alien	=	compound(alien_objects,	pos=starting_position)									

#	+++	start	of	EVENT_HANDLING	section	-	separate	functions	for	
#																																keypresses	and	mouse	clicks...	

def	keydown_fun(event):	
				"""	function	called	with	each	key	pressed	"""	
				ball.color	=	randcolor()	
				key	=	chr(event.which)	
				ri	=	randint(0,	10)	
				print("key:",	key,	ri)		#	prints	the	key	pressed	-	caps	only...	
					
				amt	=	0.42			#	"strength"	of	the	keypress's	velocity	changes	
				if	key	in	'WI&':	#	all	capitals!	
								ball.vel	=	ball.vel	+	vector(0,0,-amt)	
				if	key	in	'A%J':		
								ball.vel	=	ball.vel	+	vector(-amt,0,0)	
				if	key	in	'S(K':		
								ball.vel	=	ball.vel	+	vector(0,0,amt)	
				if	key	in	"D'L":		
								ball.vel	=	ball.vel	+	vector(amt,0,0)	
				if	key	in	"	":	
								ball.vel	=	vector(0,0,0)	#	reset!	via	the	spacebar	
								ball.pos	=	vector(0,0,0)

key	presses…

random	change	of	the	sphere's	color

printing	is	great	
for	debugging!

variables	make	it	easy	to	change	
behavior	across	many	lines	of	code			

(here,	all	four	motion	directions)

have	shortcuts	to	make	your	
game	easier	--	or	reset	it!

GlowScript	/	vPython	examples…

Hey!	I	see	what's	
happening	here!

