
Implement	a	(text)	menu:
(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

hw8pr4:				T.	T.	Securities	(TTS)

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

Analyzes	a	sequence	of		"stock	prices"

x

i

webbrowser.open_new_tab(url)

The	TTS	advantage!
Your	stock's	prices:

What	is	the	best	
TTS	investment	
strategy	here?

L	=	[40,	80,	10,	30,	27,	52,	5,	15]	

Day Price
 0 40.0
 1 80.0
 2 10.0
 3 30.0
 4 27.0
 5 52.0
 6 5.0
 7 15.0

To	make	our	business	plan	realistic,	however,	we	only	allow	selling	after	buying.
Important	fine	print:

Implement	a	(text)	menu:
(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

hw8pr4:				T.	T.	Securities	(TTS)

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day
3

day
4

day
5

day
6

day
7

Analyzes	a	sequence	of		"stock	prices"

x

i

User	input…

What	will	Python	think?

meters = input('How many m? ')

cm = meters * 100

print("That's", cm, 'cm.')

I	think	I	like	these	units	better	
than	light	years	per	year!

User	input…

What	will	Python	think?

meters = input('How many m? ')

cm = meters * 100

print('That is', cm, 'cm.')

I	think	I	like	these	units	better	
than	light	years	per	year!

input 	A
LWAYS			re

turns	a	

string	–	no
	matter	wh

at's	typed!

Fix	#1:		convert	to	the	right	type

m_str = input('How many m? ')

meters = float(m_str)

cm = meters * 100
print('That is', cm, 'cm.')

name: meters
type: float

name: cm
type: float

42.0 4200.0

name: m_str
type: string

'42'

...	but	cras
h-able

Fix	#2:		convert	and	check
m_str = input('How many m? ')

try:
 meters = float(m_str)
except:
 print("What? Didn't compute!")
 print("Setting meters = 42")
 meters = 42.0

cm = meters * 100
print('That\'s', cm, 'cm.')

crash-able

try-except
		lets	you	t

ry	code	

and	–	if	it	
crashes	–	c

atch	an	

error	and	
handle	it

Fix	#2:		convert	and	check
m_str = input('How many m? ')

try:
 meters = float(m_str)
except:
 print("What? Didn't compute!")
 print("Setting meters = 42")
 meters = 42.0

cm = meters * 100
print('That\'s', cm, 'cm.')

crash-able

try-except
		lets	you	t

ry	code	

and	–	if	it	
crashes	–	c

atch	an	

error	and	
handle	it

These	errors	are	called	e
xceptions.

This	is	exception	handli
ng.

Fix	#3:		eval	executes	Python	code!

m_str = input('How many m? ')

meters = eval(m_str)

cm = meters * 100
print('That is', cm, 'cm.')

What	could	
go	wrong	

here?

Fix	#3:		eval	executes	Python	code!

What	could	
REALLY	go

	wrong	he
re?

m_str = input('How many m? ')

try:
 meters = eval(m_str)
except:
 print("What? Didn't compute!")
 print("Setting meters = 42")
 meters = 42.0

cm = meters * 100
print('That is', cm, 'cm.')

A	larger	application
def menu():
 """ prints our menu of options """
 print("(0) Continue")
 print("(1) Enter a new list")
 print("(2) Analyze")
 print("(9) Break (quit)")

def main():
 """ handles user input for our menu """

 while True:
 menu()
 uc = input('Which option? ')

 try:
 uc = int(uc) # was it an int?
 except:
 continue # back to the top!

Perhaps		uc the	
reason	for	this?

Calls	a	helper	
function

def main():
 """ handles user input for our menu """
 L = [30,10,20] # a starting list

 while True:
 menu() # print menu
 uc = input('Which option? ') ...

 if uc == 9:

 elif uc == 0:

 elif uc == 1:

 elif uc == 2:

(9)	Quit

(1)	Get	new	list

(2)	Analyze	!

(0)	Continue

...	and	so	on	...

def main():
 """ handles user input for our menu """
 L = [30,10,20] # a starting list

 while True:
 menu() # print menu
 uc = input('Which option? ')

 if uc == 9:
 break

 elif uc == 0:
 continue

 elif uc == 1:
 ...	input	...	eval	...	

 elif uc == 2:

(9)	Quit

(1)	Get	new	list

(2)	Analyze	!

(0)	Continue

...	and	so	on	...

break	jumps	out	of	the	loop

uses	eval	(+check)	for	a	new	L

continue	jumps	back	to	the	top

other	functions	as	needed...

(A)	Which	code	below	handles	an	input	of	5	?			of	7	?	

(B)	What	does	choice	3	print	that	0	does	not?

(E)	What	could	you	
type	for	newL	that	
would	print	this?

(D)	What	could	you	
input	for	newL	that	
would	print	this?

(EC)	How	could	a	user	learn	the	value	of	secret_value	if	they	knew	that	
variable	name	and	could	run	the	program	--	but	didn't	have	this	source	code?(C)	What	line	of	code	

runs	after	this	break	?

main	function

while		True:

Full	program	example	of	
user-interactions

Try it! Name(s) ___________

input

secret_value

Functions	you'll	write All	use	loops…

def average(L)Menu

(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

def stdev(L)

def minday(L)

def maxday(L)

 (L[i] - Lav)
2Σ

len(L)
i

webbrowser.open_new_tab(url)

Min	price

What's	the	idea	for	finding	the	smallest	(minimum)	price?

m	=

track	the	value	of	the	minimum	so	far	as	you	loop	over	L

m	is	the	
"min	so	far"

Just	call	min	?

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day	
3

day
4

day
5

day
6

day
7

Min	price	vs.	min	day

def minprice(L):
 m = L[0]
 for x in L:
 if x < m:
 m = x
 return m

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day	
3

day
4

day
5

day
6

day
7

What about tracking BOTH
the day of the minimum
price and that min price?

m	=	
40

m	=	
10

m	=	
5 5	is	

returned

Try	it!

def min_prc_day(L):
 minprc = L[0]
 minday = 0

 for i in range(len(L)):
 if

 return minprc, minday

Finish	this	code	to	return	both	the	
minprice	and	the	minday	of	L!	

Expand	on	the	minprice	example...

def mindiff(L):
 mdiff = abs(L[1]-L[0])

 for
 for
 if something here

 return mdiff

Write	mindiff	to	return	the	smallest	absolute	
difference	between	any	two	elements	from	L.

L		will	be	a	list	of	2	or	more	#s.
Hint:	Use	a	nested	loop!

Only	consider	abs	differences.	

min_prc_day([9,	8,	5,	7,	42])

5,	2
0 1 2 3 4

L

mindiff([42,3,100,-9,7])	

4 L

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day	
3

day
4

day
5

day
6

day
7

	=	40 	=	10 	=	5

6	is	
returned

	=	0 	=	2 	=	6

def min_prc_day(L):
 minprc = L[0]
 minday = 0
 for i in range(len(L)):
 if

 return minprc, minday

track	both	price	
and	day

update	both
(as	needed)

loop	over

minval

minday

i

return	both!

5	is	
returned

L = [40, 80, 10, 30, 27, 52, 5, 15]

day
0

day
1

day
2

day	
3

day
4

day
5

day
6

day
7

	=	40 	=	10 	=	5

6	is	
returned

	=	0 	=	2 	=	6

def min_prc_day(L):
 minprc = L[0]
 minday = 0
 for i in range(len(L)):
 if L[i] < minprc:
 minprc = L[i]
 minday = i
 return minprc, minday

track	both	price	
and	day

update	both
(as	needed)

loop	over

minval

minday

i

return	both!

5	is	
returned

for i in range(4):
 for j in range(4):

def mindiff(L):

 mdiff = abs(L[1]-L[0])

 for i in range(len(L)):
 for j in range(,len(L)):

 if

 return mdiff

Hint:	Use	nested	loops:

Write	mindiff	to	return	the	smallest	abs.	diff.	
between	any	two	elements	from	L.

Track	the	value	of	the	
minimum	so	far	as	you	
loop	over	L	twice…

mindiff([42,3,100,-9,7])	

4

L

i j

1 4

for i in range(4):
 for j in range(4):

def mindiff(L):

 mdiff = abs(L[1]-L[0])

 for i in range(len(L)):
 for j in range(i+1,len(L)):

 if abs(L[j]-L[i]) < mdiff:
 mdiff = abs(L[j]-L[i])

 return mdiff

Track	the	value	of	the	
minimum	so	far	as	you	
loop	over	L	twice…

Hint:	Use	nested	loops:

mindiff([42,3,100,-9,7])	

4
Write	mindiff	to	return	the	smallest	abs.	diff.	

between	any	two	elements	from	L.

L

i j

1 4

Investment	analysis	for	the	21st	century	…	and	beyond

Software	side	…

(0) Input a new list
(1) Print the current list
(2) Find the average price
(3) Find the standard deviation
(4) Find the min and its day
(5) Find the max and its day
(6) Your TTS investment plan
(9) Quit
Enter your choice:

T.	T.	Securities

Hardware	
side…

The	TTS	advantage!
Your	stock's	prices:

What	is	the	best	
TTS	investment	
strategy	here?

L	=	[40,	80,	10,	30,	27,	52,	5,	15]	

Day Price
 0 40.0
 1 80.0
 2 10.0
 3 30.0
 4 27.0
 5 52.0
 6 5.0
 7 15.0

To	make	our	business	plan	realistic,	however,	we	only	allow	selling	after	buying.
Important	fine	print:

Day Price
 0 40.0
 1 80.0
 2 10.0
 3 30.0
 4 27.0
 5 52.0
 6 5.0
 7 15.0

Important	fine	print:

for	each	buy-day,	b:

				for	each	sell-day,	s:

								compute	the	profit

								if	profit	is	>	max-so-far:

														remember	it	in	a	variable!

return	profit,	its	b-day,	and	s-day

The	TTS	advantage!
Your	stock's	prices:

What	is	the	best	
TTS	investment	
strategy	here?

L	=	[40,	80,	10,	30,	27,	52,	5,	15]	

To	make	our	business	plan	realistic,	however,	we	only	allow	selling	after	buying.

set	max-so-far	=	0

