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THE ENUMERATION AND CLASSIFICATION OF
KNOTS AND LINKS

JIM HOSTE
PITZER COLLEGE

CLAREMONT, CA 91711

Abstract. The theoretical and practical aspects of link
classification are described, with special emphasis on the
mathematics involved in recent, large-scale link tabulations.

1. Introduction

The first tables of knots were produced in the late 19th century at the
very dawn of modern topology and knot theory. Inspired by Lord
Kelvin’s “Vortex Theory of the Atom” [59], the Scottish physicist
P. G. Tait set out to systematically enumerate knots based on their
crossing number. Joined later by the English Reverend T. P. Kirkman
and America’s first knot theorist, C. N. Little, the tabulating trio
eventually produced, after untold hours of laborious handwork spread
out over a period of about 25 years, a table of prime, alternating
knots to 11 crossings and prime non-alternating knots to 10 crossings.
A little more than a century later, in July 2003, S. Rankin, O. Flint
and J. Schermann tabulated all 6, 217, 553, 258 prime, alternating
knots through 22 crossings in just over a day and a half of computer
time! In between lies a story that touches nearly every aspect of the
theory of knots—running from the beginning of the subject to the
present day, and spanning the entire breadth of the topic in search of
the powerful yet practical invariants needed to classify knots.

Much has been written about the history of knot theory and in
particular the quest to tabulate knots and links. In this paper we will
give only the most basic treatment of the subject, concentrating
primarily on the mathematics involved in, and leading up to, the
most recent large-scale tabulations. The reader seeking more details
is urged to consult the original papers of Tait [55], Kirkman [34], [35],
and Little [37], [38], [39], [40]; J. H. Conway [13];
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M. B. Thistlethwaite [19], [20], [56]; and recent work by Rankin, Flint
and Schermann [47], [48], [49]. These papers represent the core of the
tabulating tradition. The early history of knot theory as well as knot
tabulation are beautifully described in the historical articles of
M. Epple [21], [22], [23], and are highly recommended. A survey of
more recent work in knot tabulation may be found in [30].

In Section 2 we review some basic definitions and then outline, in
Section 3, the theoretical aspects of knot and link classification.
While a complete classification has been achieved, at least in theory,
simple means of distinguishing arbitrary links with perhaps hundreds
or thousands of crossings may never be forthcoming. Section 4
therefore focusses on the practical ingredients of the most recent
tabulations—work by Thistlethwaite, J. Hoste and J. Weeks, and now
Rankin, Flint and Schermann that have extended the tables into the
20-crossing realm. For lack of space, the details of many important
pieces of work, perhaps most noticeably, the groundbreaking and
profound contributions of Conway [13], and the promising approach
via braids of J. S. Birman and W. W. Menasco [6], are not discussed.

2. Definitions

We assume that the reader has a basic knowledge of knot theory, but
we briefly describe the main definitions and important theorems. For
a more detailed account see [51].

A knot is a smooth, unoriented, embedding of S1 in S3, where two
such embeddings are considered equivalent if there is a
homeomorphism h : S3 → S3 which takes one embedded circle to the
other. If the homeomorphism h preserves the orientation of S3, then
this is equivalent to saying the embeddings are related by an ambient
isotopy. If not, then the two embeddings are related first by a
reflection and then by ambient isotopy. No attempt at all will be
made at this point to distinguish a knot from its mirror image, or
reflection, even though such a pair might not be ambient isotopic. A
knot which is ambient isotopic to its reflection is called amphicheiral
or achiral. While many knots obviously appear to be chiral, it was
not until 1914 that topology had developed sufficiently to allow a
proof of this! (See M. Dehn [17].)Today, several invariants are known
that can easily distinguish many knots from their mirror images. (For
example, the Jones polynomial [32].)
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A link is a disjoint union of knots in S3, again considered up to
homeomorphisms taking one link to another. As before, the
homeomorphism may or may not preserve the orientation of S3. Each
knot in the link is called a component. A link is called trivial if it is
the boundary of a disjoint collection of smoothly embedded disks.

Of course, the equivalence relation on knots and links can be made
finer by either allowing only ambient isotopy, or by orienting the links
and requiring that the orientations be preserved, or both.
Additionally, for links, we could order the components and require
that the ordering be preserved. None of these refinements will be
considered now. Instead, this paper will discuss only the enumeration
and classification of unoriented links under the coarsest equivalence
defined above. We can then take the point of view of considering
these refinements as symmetries enjoyed by a particular knot or link.
(See [30] for symmetry data of all knots to 16 crossings.)

Just as each integer may be decomposed into a product of primes, so
also can each link be expressed in terms of simpler links. The most
elementary decomposition occurs when a link is split. In this case
there exists a smoothly embedded 2-sphere in the link complement
which separates some components of the link from the rest. If a link
is nonsplit it still might be made up of simpler links via the operation
of connected sum, which is defined as follows. Given two links L1 and
L2, in separate copies of S3, first remove a ball Bi, i = 1, 2, from each
copy of S3 which meets each Li in a diameter of Bi. Now form a new
copy of S3 by gluing together along their boundaries the
complementary balls to B1 and B2, matching the orientations of the
3-manifolds, and matching the endpoints of what remains of the two
links. There are two ways to do this, depending on how the two pairs
of endpoints are matched. The newly formed link is the connected
sum of L1 and L2 and is denoted L1]L2. A link is prime if it is
nonsplit and not the connected sum of nontrivial links.

The operation of connected sum is not well defined. In the case of
links having multiple components it clearly matters which
components are chosen to be connected together. But additional,
more subtle, problems exist too because of our choice of link
equivalence. While we make no distinction between a knot K and its
reflection K̄, it may turn out that K]J and K̄]J are not equivalent.
Similarly, if K is an oriented knot and −K is its reverse (obtained by
reversing the orientation), then even though we consider K and −K
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the same it may be the case that they are not ambient isotopic by an
isotopy respecting orientation. This allows that, even considered as
unoriented knots, K]J and (−K)]J might not be equivalent, where
the connected sum was formed so as to respect the orientations of the
summands. (Nonreversible knots, or sometimes called noninvertible
knots, were first shown to exist by H. F. Trotter [60].)

Nevertheless, given a nonsplit, nonprime link we may decompose it as
a connected sum and continue to decompose its summands if they
remain nonprime until finally the process must end (because of the
additivity of genus). Thus every link can be expressed as a connected
sum of prime links. In the case of knots, it was proven in 1949 by
H. Schubert [53] that the decomposition of a knot into prime
summands is unique (up to the ordering of the summands). The
analogous result for nonsplit links was shown in 1958 by
Y. Hashizume [27]. Because of these results the focus has
traditionally been on prime knots and links, since the composite ones
can all be built up out of the prime ones.

Every link can be projected into a plane so that the only singularities
are a finite number of transverse double points. If at each double
point we indicate an over and undercrossing strand in the obvious
way then we call the resulting figure a link diagram. (See Figure 3.)
The minimum number of crossings in any diagram of the same link is
called the crossing number of the link. Crossings of oriented links can
be labeled right or left handed as follows. Standing on the
overcrossing strand of a right handed crossing and facing forward, the
undercrossing strand will pass beneath from right to left. Atop a left
handed crossing, the strand below runs from left to right.

Representing knots and links by diagrams is undoubtedly the oldest
method in use. Many different local diagrammatic changes, some of
which preserve the link, and some which do not, are central to the
study of knot theory. Chief among these, and shown in Figure 1, are
the Reidemeister moves, as well as the flype shown in Figure 2, which
is itself always a combination of Reidemeister moves.

The importance of the Reidemeister moves lies in the fact that two
link diagrams represent the same link (here “same” means ambient
isotopic) if and only if they are related by a (finite) sequence of such
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Figure 1. Reidemeister Moves

moves1. Many important link invariants can be shown to exist by
proving that some quantity derived from a link diagram is preserved
by Reidemeister moves, and thus actually an invariant of the link
type. This diagrammatic, or combinatorial, approach to knot and link
theory has been, and continues to be, one of the cornerstones of the
subject.

Figure 2. A Flype

A crossing in a link diagram is nugatory if there is a circle in the
projection plane that meets the diagram transversely only at that
crossing. A nugatory crossings can clearly be removed by a flype (or
perhaps by a single Type I Reidemeister move). A diagram that has
no nugatory crossings is called reduced.

1The Reidemeister moves were known to J. C. Maxwell at least as early as 1868
(See [22].) The proof that they suffice to pass between equivalent diagrams was
published by both Reidemeister [50], and J. W. Alexander and G. B. Briggs [2].
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3. Classifying Knots and Links

There are infinitely many different knots and links, and to date no
practical or simple means to classify them has been found. The
emphasis here, of course, must be placed on the words “practical or
simple”, although even the word “classify” deserves some clarification.

In some sense, the theorem of Reidemeister, and Alexander and
Briggs, classifies links according to their diagrams: every link can be
represented by a diagram and two such diagrams represent the same
link if and only if they are related by Reidemeister moves. But since
no a priori bound on the number of such moves which might be
required to pass between two given diagrams exists, we cannot
algorithmically decide, by exploring a finite number of Reidemeister
moves, if two diagrams are in fact equivalent.

Alternatively, W. Whitten has shown that prime knots with
isomorphic fundamental groups have homeomorphic complements
[65]. Coupled with the important theorem of C. McA. Gordon and
J. Leucke that knots with homeomorphic complements are equivalent
[25], we see that prime knots are classified by their fundamental
groups. But as Alexander himself pointed out in 1927 [1],
“unfortunately, the problem of determining when two such groups are
isomorphic appears to involve most of the difficulties of the knot
problem itself.”

But again, this is less than satisfactory, as it simply exchanges one
difficult problem for another.

To address problems of this sort, we will say that links have been
classified if we can solve the recognition problem. That is, is there an
algorithm that can decide, in a finite amount of time, if any given
pair of links are equivalent? Notice that given such an algorithm, we
could then enumerate all links as follows. Since there are only finitely
many link diagrams with a given crossing number, we could
systematically list all diagrams arranged by crossing number. As each
new diagram is produced, we could compare it to all the diagrams
already on the list to see if it represents a new link. If it does, we add
it to the list. If not, we discard it. But even this “solution” to the
problem leaves us wanting, as ordering the links by crossing number is
somewhat artificial, probably having no real bearing on the true
topological nature of the links.
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In theory, the link recognition problem has been solved. The main
work was done by W. Haken, F. Waldhausen, and K. Johannson, with
important contributions by G. Hemion, W. Jaco, P. B. Shalen, and
S. Matveev. Their algorithm is too complicated to describe
completely but we will give a very brief description. The interested
reader should consult the recent book of S. Matveev [41], where the
entire algorithm is described in detail. The algorithm compares the
exteriors of the two links which have been additionally marked with
the meridians of each component. (The exterior of a link is the
closure of the complement of a regular neighborhood of the link. A
meridian of a knot is the boundary of a disk meeting the knot
transversely in one point.) Two links are equivalent if and only if
there is a homeomorphism between their exteriors taking meridians to
meridians. Because of the theorem of Gordon and Leucke, the
meridians may be ignored in the case of knots, but in general the
Haken algorithm does not rely on this simplification.

In order to determine if the two marked link exteriors are
homeomorphic, the fundamental idea is to cut each exterior open
along incompressible surfaces and continue to do so with what
remains until, eventually, the process must end. By comparing the
ending states and their markings, and the regluing instructions
needed to return to the link exteriors, it can be decided if the original
marked link exteriors are homeomorphic. In order to make the
process algorithmic, the link exteriors are first triangulated and the
theory of normal surfaces is used to find the incompressible surfaces.
Each surface in the link exterior can be assumed to meet each
tetrahedron of the triangulation in one of seven basic ways. Assigning
seven variables to each tetrahedron to represent the number of local
pieces which fit together to form the surface, we arrive at a finite
number of matching equations in a finite number of variables. Only a
finite number of fundamental solutions to these equations exist and
these provide an algorithmic process for constructing the necessary
incompressible surfaces in the link exterior. The entire procedure is
quite complicated and may never be fully implemented on a computer.

While the Haken algorithm applies to all nonsplit links, the special
case of the unknot recognition problem has received much attention.
This is the problem of deciding if a given knot diagram represents the
unknot. The complexity of this problem has been proven to be in class
NP by J. Hass and J. C. Lagarias [26]. They also derive from the link
recognition algorithm an upper bound on the number of Reidemeister
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moves m that might be needed to connect a knot diagram D having n
crossings to the trivial diagram having zero crossings (assuming D
represents the unknot.) They prove that m ≤ 2cn, where c = 1011. It
should be noted that Hass and Lagarias made no attempt to find an
optimal bound and in fact they believe it is quite likely that the
actual upper bound on the required number of Reidemeister moves to
connect two equivalent knot diagrams is polynomial in the (larger)
number of crossings. Still, more work is clearly needed before the
Haken link recognition algorithm becomes practical!

At least one computer program employing normal surface theory has
been written. Developed by D. Letscher and B. Burton, and
originally called Normal but now known as Regina, the software can
carry out a variety of 3-manifold investigations based on normal
surfaces [9]. Using Regina it may be possible using Haken’s algorithm
to identify unknots among diagrams with relatively few crossings.

An algorithmic solution to the unknot recognition problem, which is
quite different from the Haken algorithm, has also been found by
Birman and M. D. Hirsch [5]. Their approach makes use of braids.
Given a knot diagram D with n Seifert circles and c crossings, it is
known that D can be redrawn as the closure of a braid β on n strings
with at most c + (n− 1)(n− 2) crossings [61], [66]. They prove that if
D is the unknot, then some conjugate of β must be among a certain
finite list of n-string braids that depends only on n and c. This list
can be generated algorithmically and, making use of the solution to
the conjugacy problem in the braid group Bn, each of its elements can
be compared to D. A computer program has been written by Birman,
M. Rampichini, P. Boldi, and S. Vigna [8] to produce the list of
braids. When combined with programs by other authors to solve the
conjugacy problem in the braid group (see for example [12]), the
entire process should be fully implemented.

Two other computer programs that can be used to attack the unknot
recognition program, and which are frequently successful on diagrams
with even hundreds of crossings are SnapPea by Weeks [62], [64], and
Book Knot Simplifier by M. Andreeva, I. Dynnikov, S. Koval,
K. Polthier and I. Taimanov [4]. Working with a triangulation of the
knot exterior, SnapPea looks for ways to reduce the number of
tetrahedra in the triangulation. Book Knot Simplifier makes use of
the fact that every link can be embedded in a book with three pages,
that is, a union of three half-planes with common boundary. This
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way of viewing links seems to be particularly adept at computer
manipulation. In particular there are a large number of moves, which
are easy to locate and apply, that change the 3-page presentation
while preserving link type. The program searches for simplifying
moves and seems reasonably successful at recognizing unknot
diagrams.

Since the Haken link recognition algorithm is impractical, what can
we actually do when confronted with two link diagrams wanting to
know if they are the same link? Fortunately for us, many different
knot and link invariants have been developed since the time of Tait,
and if the links are different, perhaps some known invariant will
distinguish them. Therefore we begin by computing as many
invariants as we can, beginning with the easiest to compute and
moving to the more difficult. If all known invariants fail to tell the
links apart, then perhaps they are the same, and we can launch
ourselves into an attempt to relate the two diagrams by Reidemeister
moves (or combinations of Reidemeister moves, such as flypes and
other moves to be described later). Of course the entire process is ad
hoc, and may not lead to a definite answer. The harsh reality of knot
theory is that we will probably never be able to decide if two
arbitrary links are the same or not. Just imagine being given two link
diagrams with a few million crossings each!

On the other hand, for certain classes of knots and links, spectacular
classification results have been obtained. Wonderful examples include
torus links [51], 2-bridge links [51], 3-string braids [7], alternating
links and hyperbolic links. The last two classes have proven especially
useful to the link tabulator wanting to classify all (prime) links up to
a given crossing number. In preparation for the next section, where
we describe how the current knot and link tables have actually been
constructed, we briefly discuss both alternating and hyperbolic links.

A link is alternating if it is represented by a diagram whose crossings
alternate, over–under–over–under and so on, as one travels around
the components. When Tait first began his investigations he may
have thought that all knots were alternating. (Indeed, it is nontrivial
to prove that nonalternating knots exist! The first correct proof was
given by R. H. Crowell in 1959 [15].) Tait made three conjectures
about alternating knots, all of which can be stated for links. The first
was that reduced, alternating diagrams have minimal crossing
number; the second, that any two reduced alternating diagrams of the
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same link (here “same” means ambient isotopic) have the same writhe
(the writhe of a diagram is the number of right handed crossings
minus the number of left handed crossings); the third, that two
alternating diagrams represent ambient isotopic links if and only if
they are related by flypes2. (Since flypes preserve writhe, the third
conjecture implies the second.) All of these conjectures were
eventually proven not long after the discovery of the Jones
polynomial, and its generalizations, in 1984. (See, for example, [32],
[28], [46], [57], [44], [33], [43].) The proof of the Tait Flyping
conjecture by Menasco and Thistlethwaite provides a classification of
alternating links. Unlike the Reidemeister moves, the equivalence
classes of diagrams related by flypes are all finite. Given two reduced
alternating link diagrams, we can algorithmically generate the entire
flype equivalence class of one and check to see if it contains the other.
Moreover, this task is easily implemented on a computer making the
comparison of alternating links reasonably practical. As satisfying as
this result is, we must point out that the number of alternating knots
and links is small compared to all links. In fact the proportion of
links which are alternating tends exponentially to zero with increasing
crossing number [54]. Nevertheless, as we will see in the next section,
the classification of alternating links provides the important first step
in the construction of most link tables.

A truly remarkable situation exists for hyperbolic links. These are
links for which the complement admits a complete Riemannian metric
of constant curvature -1. The complement of every hyperbolic link
can be decomposed in a canonical way into ideal polyhedra. This
canonical triangulation depends only on the topology of the link
complement. Once the canonical triangulation has been found for two
links, the triangulations can be compared combinatorially to decide if
the links have homeomorphic complements or not. The canonical
triangulation (together with meridian data) provides a complete link
invariant! For further details the reader should consult [24], [52], [63].

Unlike the general algorithm of Haken, computing the canonical
triangulation of a hyperbolic link complement is much more practical.
The program SnapPea does just this, as well as compute other
invariants of hyperbolic manifolds such as volume, etc. SnapPea is so
able to handle relatively small knots and links that it was used
successfully by Hoste and Weeks in their tabulation with
Thistlethwaite of all prime knots through 16 crossings. Unlike

2It may be that Tait never actually held this to be true. See [22].
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alternating links, the class of hyperbolic links is much “bigger.” Of
the 1, 701, 936 prime knots with 16 or less crossings, all but 32 are
hyperbolic. According to Thurston, every knot is either a torus knot,
a satellite knot, or a hyperbolic knot. The torus knots and links are
those that can be embedded on a standard, unknotted torus, sitting
inside S3. Torus links are completely classified by how many times
they wind in each direction around the torus. Moreover the crossing
number of a torus knot or link has been determined by
P. B. Kronheimer and T. S. Mrowka [36]. Thus we can tell exactly
how many torus links there are of a given crossing number. A satellite
link is one that orbits a companion knot K in the sense that it lies
inside a regular neighborhood of the companion. Since every knot is a
satellite of the unknot we require the companion to be nontrivial.
Note that composite knots are satellites of each of their summands.
While few satellites exist at small crossing numbers, their numbers
will grow tremendously as the number of crossings increases. If a
satellite has wrapping number d (that is, the satellite meets every
meridional disk in the regular neighborhood of the companion at least
d times), then it seems plausible that the crossing number of the
satellite is at least cd2, where c is the crossing number of the
companion. Alas, this has not been proven, but it indicates why so
few satellites exist to 16 crossings.

How SnapPea finds the canonical triangulation of a hyperbolic link
complement is described nicely in [64]. However, it is worth pointing
out that problems can arise. In order to find the triangulation, certain
matching equations must be solved, the solutions of which SnapPea
only approximates to a high degree of accuracy. Nevertheless, there is
no guarantee that the level of accuracy is sufficient to insure that
SnapPea finds the canonical triangulation, rather than some
noncanonical triangulation. Thus, SnapPea may falsely declare two
hyperbolic links different when in fact they are the same, if it had
arrived at the non-canonical triangulation for one or both of the links.
But fortunately, it cannot falsely declare two links to be the same. No
matter what triangulations are found, canonical or not, if they match
for two links, then the link complements are homeomorphic. And if
further checking reveals that meridians are taken to meridians, then
the links are equivalent. A program called Snap has been written by
O. Goodman which specifically eliminates the round-off errors
introduced by SnapPea and therefore cannot make the kind of
mistake just described. But unlike SnapPea, Snap is less practical,
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taking much longer to find the canonical triangulation for a relatively
small knot or link. See [14] for more information on Snap.

4. Producing Link Tables

Tabulating knots and links in order to discover the nature of physical
matter—Gold is the trefoil! Lead is the figure eight!—was forgotten
long ago. But somewhat ironically, tables of knots are now proving
useful to scientists once again. For example, knot theory is playing an
important role in recombinant DNA research, and researchers in that
field need to identify knots and links that occur in their experiments.
Important examples in knot theory have also come to light
specifically because of the careful and methodical enumeration of
knots and links. For example, nontrivial links with trivial Jones
polynomial were first found in this way by Thistlethwaite [58], who
also turned up the first examples of amphicheiral knots with odd
crossing number [30]. No doubt other interesting and important
examples will surface as the tables are extended even further. Having
billions of links in the tables, as opposed to only a few hundred,
provides a much richer and realistic data set for experimenting and
testing conjectures. Thus tables are an important part of our field
and are likely to expand further as new algorithms and invariants are
discovered and computers grow ever faster.

We outline here the basic plan that has been used to create the latest
(and largest) tables of prime knots and links. The idea, already
mentioned earlier, is simple: systematically list all diagrams to a
given crossing number and then group them together according to
link type. Because practical link recognition can only be carried out
in an ad hoc way (except for alternating links) the second half of the
program is clearly the more vexing part. But given the huge number
of diagrams possible, even the first part must be undertaken with
some care.

Once a table of prime knots and links has been found, these can then
be connect-summed together in all possible ways to obtain the
composite links. Thus efforts have concentrated primarily on
tabulating prime knots and links. It is worth pointing out though
that one of the more obvious “theorems” of knot theory, that crossing
number is additive under connected sum, has yet to be proven (or,
incredibly, could it be false?) So while our table of prime knots and
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links might be arranged by crossing number, it is conceivable that
using it to produce the composite links might not create them in
order with respect to crossing number.

Our overall plan is thus the following. First enumerate all prime
alternating link diagrams to a given crossing number and group these
together by flype equivalence class so as to create a table of prime
alternating links. Three theorems are of particular importance here.
The first Tait Conjecture assures us that a reduced alternating
diagram is minimal in crossing number. Hence we can be sure that
the crossing numbers of the knots and links represented by the
diagrams under consideration are exactly what they appear to be.
The second theorem is an important result of Menasco that states
that a reduced alternating diagram represents a prime link if and only
if it is prime as a diagram [42]. That is, if no circle in the projection
plane meets the diagram transversely in two points with crossings on
either side, then in fact the link is prime. This result is an incredible
boon to the tabulator, allowing easy recognition of composite
alternating links. Finally, the already mentioned Tait Flyping
Conjecture obviously plays a crucial role.

After the alternating links have been tabulated, we consider a
diagram representing each alternating link, and change its crossings in
all possible ways in order to create nonalternating diagrams. Most of
these will reduce to fewer crossings, and some link diagrams may even
represent split links or composite links. So clever methods will be
needed to weed out the multitude of uninteresting and unwanted
diagrams. Finally, ad hoc methods must be employed to either
distinguish all that remains (by computing various invariants), or
recognize repeats (by finding sequences of Reidemeister moves or, in
the case of hyperbolic links, comparing canonical triangulations).

The entire process begins with a scheme to encode diagrams.

4.1. Encoding Link Diagrams. There are a variety of ways to
encode knot and link diagrams. One scheme, which was introduced by
Tait (and was similar to ideas of C. F. Gauss and J. B. Listing), and
further refined by C. H. Dowker and Thistlethwaite, has proven to be
quite useful. Referred to here as the DT sequence of a link diagram
(after Dowker and Thistlethwaite), it has been used successfully by a
number of people in compiling modern tables [19], [20], [56], [3], [30].
The primary advantage of the DT sequence seems to be its brevity.
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With over 6 billion knots and links now in the tables, using as little
computer memory as possible has obvious value. On the other hand,
DT sequences are not easily transformed directly under the types of
operations that need to be applied to diagrams in the course of a
tabulation. Instead, it is usually necessary to derive additional,
attendant information about the diagram, such as the signs of the
crossings, or how the faces of the diagram (the complementary
regions) meet one another, and so on, before operating on the
diagram. Using this derived information assists in encoding new
diagrams obtained from old ones via changes such as flypes, or other
Reidemeister moves. Not only storage size, but also computing speed
are of great importance in any computer assisted tabulation.
Therefore it usually makes sense to sacrifice brevity in favor of a more
detailed and redundant encoding scheme if it can increase the speed
at which diagrams can be manipulated. Indeed, the recent tabulation
of alternating knots through 22 crossings by Rankin, Flint and
Schermann uses an encoding scheme that is far more complicated
than the DT sequence, takes more storage space per link, yet seems
to be more finely tuned to the task of enumeration. Because of its
historical importance, as well as continuing utility in modern
tabulations and knot manipulation software, we will describe the DT
sequence in some detail. Before doing so however, we briefly mention
other encoding schemes of importance.

A quite different method of notation was introduced by Conway [13],
building on ideas used by Kirkman. Conway’s scheme is quite efficient
for links of low crossing number and in fact reflects deep structural
properties of links. But it draws on a large set of symbols arranged
according to a rather large set of rules, both of which grow with
crossing number and for this reason does not lend itself well to
computer programming.

However, for small knots and links Conway’s system is so efficient
that it allowed him to tabulate (by hand) all prime knots to 11
crossings and all prime links to 10 crossings in a few hours! Conway
found 11 omissions and one duplication in Little’s table of 11 crossing
alternating knots. In the late 1970’s A. Caudron [11] used an
alternative version of Conway’s notation to retabulate all prime knots
to 11 crossings, discovering, in the process, four omissions in
Conway’s list of 11 crossing nonalternating knots. Continuing with
the methodology of Kirkman and Conway, S. Jablan [31] completed
the tabulation of 12 crossing alternating links in 1997.
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Every link may be represented as a closed braid and so braid notation
is an obvious choice for encoding diagrams. However, since
transforming an arbitrary diagram into a closed braid usually involves
an increase in the number of crossings, braids are perhaps not the
best choice for a table organized by crossing number. But perhaps
organizing a table instead with respect to one of the indices
appropriate for braids, such as number of strings, would be better. At
any rate, no major tabulation has yet to be undertaken based on
braids. Perhaps the work of Birman and Menasco [6], coupled with
the unknot recognition algorithm of Birman and Hirsch [5], or
similarly inspired algorithms, will one day lead to a major tabulation
using braids. Instead, some effort has been made to systematically
find braid representatives for already tabulated knots and links.

To encode a diagram with a DT sequence, first consider an arbitrary
knot diagram with n crossings, and therefore 2n edges. (The edges
are the components of the associated projection minus the double
points.) Place a basepoint on one of the edges and also choose an
orientation of the knot. We may now label the crossings with
consecutive integers 1, 2, 3, . . . , 2n as we travel around the projection
starting from the basepoint. Each crossing receives two labels and it
is a consequence of the Jordan Curve Theorem that the labels at each
crossing have opposite parity. (A slight variation is to label the edges
rather than the crossings. In this case the edge labels are paired, one
with another, by seeing which two labels lead into each crossing.) The
pairing of labels at each crossing gives a permutation, σ of the set
{1, 2, 3, . . . , 2n}. The sequence of even numbers,
S = {σ(1), σ(3), . . . , σ(2n− 1)} is sufficient to denote σ. The final
step in producing the DT sequence is to consider how the diagram
differs from an alternating diagram. If the diagram is alternating then
S is used to denote the diagram. If not, then some set of crossings of
the diagram may be changed to produce an alternating diagram. The
labels of S corresponding to these crossings are then negated to
finally give a signed sequence of the even integers from 2 to 2n. Since
there are two possible alternating diagrams possible (each the
reflection of the other), we see that S is only defined up to negation
of all its entries. Since our aim is only to tabulate knots up to
reflection, this presents no difficulty. It makes sense to either choose
S to have the fewest number of minus signs, or to begin with a
positive integer. The process is illustrated in Figure 3.
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1 3 5 7 9 11 13 15
10 14 16 12 6 2 8 4

eghfcadb

1 3 5 7 9 11 13 15
6 -8 12 -14 -4 16 -2 10

cDfGBhAe

Figure 3. DT Sequences for Knot Diagrams

Since there are 4n possible choices of basepoint and direction, it is
quite possible that all 4n DT sequences will be different. Choosing
the lexicographically smallest one provides the minimal DT sequence
for the diagram. A computer routine that finds the minimal DT
sequence equivalent to a given one is easy to write.

Two problems arise regarding DT sequences. The first is that for an
arbitrary diagram it may not be possible to recover the diagram from
the sequence. However, it is proven in [19] that if the diagram
represents a prime knot, and has no nugatory crossings, then it is
determined by its sequence, although only up to reflection and
isotopy in S2. Again this presents no difficulty since these distinctions
will not be made among knots in the table. The second difficulty, and
one that presents a particularly annoying computing problem, is that
most signed sequences of the numbers {2, 4, . . . , 2n} are not realizable,
that is, do not correspond to any knot. A moment’s thought reveals
that what DT sequences really record are (certain) 4-valent graphs
and of course, not all graphs are planar. While it is not difficult to
decide if a “DT sequence” really is one, it is time consuming to do so.
However, using the basic tabulation scheme of J. A. Calvo [10]
described later, we’ll see that it will never be necessary to test
arbitrary DT sequences to decide if they in fact represent knots.
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Notice that the DT sequence of a knot with n crossings may be stored
on a computer by using 2n bytes, since two bytes are usually used to
store an integer. However, we can easily halve this to n bytes by
using characters rather than integers, since one byte is typically used
to store a character. A particularly nice scheme is to use “a” and “A”
for 2 and −2, “b” and “B” for 4 and −4, etc. This allows for up to 26
crossings, but could obviously be extended considerably by using the
full ASCII character set of 256 characters (and an agreed upon
pairing of those characters.) Thus DT sequences provide a fairly
compact notation for diagrams.

The scheme can be extended to links by choosing an orientation and
basepoint for each component and then numbering the crossings (or
edges) consecutively, beginning at each basepoint in turn. In general
this may not produce the desired even-odd pairing at each crossing,
but it is not hard to see that some choice of basepoints will.
Restricting ourselves to these labellings we once again get a sequence
of even integers that may be further refined by introducing minus
signs to designate where the diagram differs from alternation.
However, one more piece of information is needed in the DT sequence,
namely which labels lie on the same component. This can be denoted
by inserting vertical bars (or some other character) into the sequence
to separate components. An example is given in Figure 4.

Again, as with knots, many signed sequences with bars do not
represent actual links. Moreover, in general, it may not be possible to
recover the diagram from the sequence without some serious
ambiguity. But it is proven in [18] that if a DT sequence encodes a
reduced diagram of a prime, nonsplit link, then it determines the
diagram up to reflection and isotopy in S2. Since we only wish to
tabulate unoriented, prime, non-split links, up to reflection, we once
again can avoid any possible ambiguity arising from the encoding
scheme.

For the class of nonsplit links, the number of possible choices of
basepoints and orientations can be reduced considerably. After the
first basepoint and orientation are chosen there are a number of
possible ways to then determine uniquely all the remaining basepoints
and orientations. One example is as follows. After choosing the first
basepoint and orientation of that component, change crossings if
necessary to make the diagram begin with an overcrossing and also
alternate. Number the crossings of the first component as usual.
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1 3 5 7 9 11 13
4 8 12 2 -14 6 -10

bdf aGc E

Figure 4. A DT Sequence for a Link Diagram

Because the link is non-split, the first component must cross other
components and therefore some crossings of the first component have
so far received only one label. Among these, pick the one, c, with the
smallest label. Orient the other component at crossing c so that c is
right handed, and place the second basepoint on that component so
that c receives the smallest possible label such that the two labels at c
have opposite parities. If any components remain we treat them in
exactly the same way, continuing until the entire diagram has been
labeled. This gives the sequence of even integers, and changing
crossings to return to the original diagram indicates where minus
signs must be inserted. Finally, bars are used to separate the
components. The example in Figure 4 obeys this scheme. By
restricting ourselves to this algorithm (or a similar one) we once again
have 4n possible ways to encode a link diagram. To choose the
lexicographically smallest DT sequence for the diagram, some
consideration must be made of the bars. A nice choice is to regard
the bar as zero (in fact, this is a nice way to store a DT sequence in
the computer), and then use ordinary lexicographic order.
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4.2. Generating All Alternating Diagrams. Each (unsigned) DT
sequence corresponds to an alternating link diagram (actually, to a
projection). Thus to generate all possible alternating diagrams with n
crossings we simply need to consider all possible DT sequences of
length n. This is exactly the original approach taken by Tait as well
as the computer equipped tabulators of the late 20-th century [30],
[3], [18], [16]. But this approach has several major drawbacks that
make it more and more impractical as n grows to 16, 17, and beyond.
The main problem is that most DT sequences do not encode prime,
nonsplit links. Thus considerable time is spent testing each DT
sequence to see if it is valid, with the greatest amount of time spent on
deciding if the sequence is realizable. Even though some clever tricks
can be introduced to avoid testing all possible DT sequences, huge
amounts of time are still wasted considering useless DT sequences.

Instead a significant savings can be achieved by inductively
generating the n-crossing alternating diagrams from the k-crossing
diagrams, where k < n. The basic idea is due to Calvo and K. Millett
[10], and has been successfully used by the author to tabulate all
alternating knots to 18 crossings, and by Thistlethwaite to tabulate
all alternating knots and links to 19 crossings. A more refined
version, which we will briefly describe later, has been used by Rankin,
Flint and Schermann to tabulate all alternating knots to 22 crossings.

Suppose that D is a reduced, prime, alternating link diagram of n
crossings. By smoothing, or nullifying, a crossing we may transform D
to a diagram, D′, of one less crossing. The two possible ways to
smooth a crossing are illustrated in Figure 5.

D′ D D′

Figure 5. Smoothing a Crossing

Depending on whether the crossing was a pure crossing (between two
strands of the same component) or a mixed crossing (between two
strands of different components), and which of the two possible
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smoothings is performed, the number of components of D and D′

may be equal or differ by one. But regardless, D′ represents an
alternating link of at least one less crossing and therefore must
already be in our census, provided it is prime. While D was assumed
to be reduced, this need not be the case for D′. After the smoothing,
nugatory crossings may be present that can then be eliminated.
Figure 6 illustrates a possible scenario.

Figure 6. Smoothing and Reducing

The important result of Calvo is that there is always at least one
crossing in D that can be smoothed so that the resulting diagram D′

will reduce, after eliminating nugatory crossings, to a reduced, prime,
alternating link diagram. Thus we may inductively build the
collection of all prime, reduced, alternating link diagrams of n
crossings by starting from the collection of all prime, reduced,
alternating link diagrams with fewer crossings and splicing in twisted
bands as in Figure 6 in all possible ways. Note that with this
approach there is no reason to tabulate knots separately from links.

Using Calvo’s algortihm, no testing of DT sequences for realizability,
primality, or nugatory crossings is ever required! On the other hand,
there is tremendous redundancy among the diagrams that are
produced, especially if no attempt is made to account for the
flype-structure of a diagram. However, Calvo also describes the
general flype structure of a reduced prime alternating diagram. Each
crossing c that can be involved in a nontrivial flype (and not all
crossings can be) generates a unique flype cycle as shown in Figure 7.
Each flype tangle on the circuit (represented by a disk in the Figure)
is minimal in the sense that flipping it over cannot be achieved as a
sequence of “smaller” flypes. A diagram is in flype minimal position if
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all crossings that generate the same flype cycle are grouped together
in a single twisted band between two flype minimal tangles. (The
diagram in Figure 7 is not flype minimal.) For a nonsplit, prime,
alternating link L we may form a graph using flype minimal diagrams
of L as vertices and connecting two vertices if they are related by a
minimal flype (not the composition of smaller flypes). Calvo shows
that this graph is always an f -dimensional torus lattice, where f is the
number of flype cycles in the link. Understanding the flype structure
of a prime, alternating diagram, can greatly increase the efficiency of
the overall program to inductively create all prime, alternating links.

Calvo’s program has been carried out by Thistlethwaite for all prime,
alternating links to 19 crossings, and independently by Hoste (for
knots only), to 18 crossings. Their results agree with each other, and
with the independent tabulation of Rankin, Flint and Schermann of
prime alternating knots to 22 crossings.

In the remainder of this section we will briefly describe the Rankin,
Flint and Schermann tabulation, which is essentially a refinement of
Calvo’s approach with special effort having been taken to avoid
redundant work thereby increasing efficiency. Their approach is
extremely technical and the interested reader should consult their
papers for details [47], [48], [49].

Rankin, Flint and Schermann consider four diagrammatic operations
which they call D, ROTS, T, and OTS and which are pictured in
Figure 8. These operations are applied to prime, alternating knot
diagrams. Since the input diagrams are alternating, we have drawn

Figure 7. Crossing c and its Flype Cycle
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only projections in the figure, not bothering to indicate the possible
arrangements of crossings. However, given a choice of crossings in the
input, the output must have its crossings chosen so as to remain
alternating. The input diagrams are also unoriented, but in the case
of the D operator, an orientation must be introduced in order to
correctly apply D. Similarly, T is only applied if the orientation of the
input matches that shown in the figure.

Figure 8. The D, ROTS, T, and OTS operators.

The basic idea, as with Calvo, is to inductively build up the
n + 1 crossing knots from the n crossing knots. Given all prime,
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alternating n crossing knots, D and ROTS are first applied to build a
collection of n + 1 crossing, prime, alternating knots. After this is
done, T and OTS are repeatedly applied to the collection until no
new knots appear.

In order to make the process more efficient by avoiding the creation of
redundant diagrams, Rankin, Flint and Schermann make a careful
analysis of the flype cycle structure of a knot and introduce a refined
knot encoding scheme that contains this information. Their method is
reminiscent of Conway’s idea of inserting tangles at 4-valent vertices
of graphs. Consider the knot shown in Figure 9. In several locations
there are sets of crossings obtained by twisting a pair of parallel
strands. Rankin, Flint and Schermann call these groups of crossings,
and a k-group is a maximal such set of k crossings. For each k, the
k-groups are labeled k1, k2, . . . kik and a type of Gauss code is then
recorded as one traverses the knot. Starting from some basepoint, and
traveling in some direction, the labels of the groups are recorded as
they are passed. Furthermore, each group is either positive or negative
depending on whether the two strands in the group are oriented
parallel or anti-parallel. Minus signs are then inserted into the Gauss
code accordingly. The group code for the diagram in Figure 9, as it is
called by Rankin, Flint and Schermann, is given in the Figure.

−21,−22, 23,−22, 24,−21, 31, 23, 24, 31

Figure 9. A diagram with k-group encoding.
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As can be seen in Figure 7, all crossings that share the same flype
cycle can be brought together by flyping into a (maximal) k-group.
Assuming that this has been done for every flype cycle, Rankin, Flint
and Schermann then show that it suffices to operate only on these
flype minimal diagrams. They furthermore show that the four
operations need only be applied as follows. First D is applied to any
one crossing in each negative k-group, k ≥ 1, and in each positive
2-group in each n crossing knot. After all possible applications of D
have been made, the ROTS operator is then applied to each negative
2 or 3 group in every n crossing diagram. Rankin, Flint and
Schermann remark that at this point they have usually produced
about 98% of the n + 1 crossing diagrams. For example, of the
40,619,385 prime, alternating 19 crossing knots, 39,722,121 were
found after only applying D and ROTS.

Next T is applied to each positive 2-group in all of the n + 1 knots
that have been created so far, and this is continued until no new
knots are added. The OTS operator is then applied until it also
produces no new knots. The operations of T and OTS are then
repeated alternately until no new knots result. At his point the
construction of all n + 1 prime, alternating knots is complete.

An important feature of their work, which is too complicated to
explain here, is that they employ a more sophisticated data structure
than simply the group code explained earlier. Instead they record the
flype cycle information for each diagram in what they call the master
group code and among all such encodings choose one, called the
master array to represent the knot. Two diagrams are flype
equivalent if and only if they have identical master arrays.

4.3. Generating the Nonalternating Diagrams. If a prime,
alternating diagram D has has n crossings, then we may produce 2n

nonalternating diagrams by switching crossings in all possible ways.
Of course, half of these are unnecessary since we will consider any
link and its mirror image as the same. Most of these diagrams will
reduce to fewer crossings, and possibly even represent split or
composite links. One way to avoid generating unwanted diagrams is
to first group all the crossings of D into subsets where within each
subset all the crossings must maintain the same state relative to each
other lest an immediate reduction to fewer crossings is possible. For
example, the set of crossings associated to a twisted band, or in the
language of Rankin, Flint and Schermann, a k-group, is such a set. If



26 JIM HOSTE PITZER COLLEGE CLAREMONT, CA 91711

all the crossings of D can be partitioned into j subsets of this kind
then only 2j−1 vs 2n−1 nonalternating diagrams need be considered.
Assuming that the nonalternating links of up to n− 1 crossings have
already been tabulated, we may first eliminate any diagram that
reduces to fewer crossings. Note that while many diagrams will
reduce to fewer crossings, relatively few will be unknots. Thus
attempting to apply one of the unknot recognition algorithms
discussed in the last section would probably be unwarranted at this
point. On the other hand, perhaps employing the ideas of I. Dynnikov
and the 3-page book simplification moves could prove useful. At
present, the only large-scale tabulations of nonalternating links have
been carried out by Thistlethwaite (knots and links), and Hoste and
Weeks (knots only), and in both cases a variety of Reidemeister
moves were employed in an effort to eliminate diagrams that reduce
to fewer crossings. In the author’s case, the equivalence class
generated by flypes and 2-passes was generated for each diagram and
each of these diagrams was searched for (i, j)-pass moves which would
reduce crossing number. An (i, j)-pass move is illustrated in
Figure 10. This move “picks up” a bridge with i overcrossings and
“lays it down” in a new location with j overcrossings. A 2-pass is a
(2, 2)-pass. Thistlethwaite uses these moves plus many other esoteric
moves (for example, one derived from the “Perko pair” equivalence
[45]) to search for reductions. A more comprehensive description of
Thistlethwaite’s moves may be found in [30].

Figure 10. The (i, j)-pass move.

It is important to note that while lots of theoretical algorithms might
be brought to bear on this stage of the problem the sheer number of
link diagrams under consideration requires great economy. Clever
programming and ad hoc tricks might bring about greater gains than
sophisticated algorithms derived from the most powerful theorems in
topology. A certain side of tabulation remains an art form.
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Experience shows that through about 17 crossings, flypes and pass
moves appear to suffice to reduce the list of nonalternating links down
to about 110-120% of its eventual size. At this point the computation
of various link invariants can be undertaken. Through 17 crossings, at
least for knots, the computation of hyperbolic structure with SnapPea
worked well. Very few knots were identified as nonhyperbolic, and
very few hyperbolic knots had volumes so suspiciously close that
further inspection (with other invariants) was warranted. The
situation with links is not quite as favorable—many more pairs are too
close to call with SnapPea and many more nonhyperbolic links exist.
The winnowing out of duplicates from Thistlethwaite’s nonalternating
lists of links through 19 crossings still awaits completion.

Number of Components
n 1 2 3 4 5 6 7 8 9
0 1
1
2 1
3 1
4 1 1
5 2 1
6 3 3 2
7 7 6 1
8 18 14 6 1
9 41 42 12 1

10 123 121 43 9 1
11 367 384 146 17 1
12 1288 1408 500 100 11 1
13 4878 5100 2074 341 23 1
14 19536 21854 8206 1556 181 13 1
15 85263 92234 37222 7193 653 29 1
16 379799 427079 172678 33216 3885 301 16 1
17 1769979 2005800 829904 173549 19122 1129 36 1
18 8400285 9716848 4194015 876173 105539 8428 471 19 1
19 40619385 48184018 21207695 4749914 599433 43513 1813 43 1
20 199631939
21 990623857
22 4976016485

Table 1. Number of prime unoriented alternating links
per crossing number n and number of components.
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5. Conclusion

Presently over 6 billion knots and links have been tabulated, some
with crossing number as high as 22. The numbers of prime,
unoriented, alternating links per crossing number and component
number are given in Table 1. The corresponding numbers for
nonalternating links are given in Table 2. As this article is being
written, Rankin, Flint and Schermann are preparing to tabulate the
23-crossing prime alternating knots, and furthermore to turn their
attention to alternating links. Thistlethwaite’s alternating link tables
to 19 crossings have yet to be confirmed, and his lists of
nonalternating links still await the final removal of duplicates.

Tables of prime knots through 16 crossings are widely available in the
software package Knotscape [29] written by Hoste and Thistlethwaite.
This software not only contains the tables, but will compute various
knot invariants and locate knots in the tables. A major revision of
Knotscape that will also handle links and include knot and link tables
to 17 crossings is currently underway. As of this writing, the tables of
Rankin, Flint and Schermann are not yet publicly available.

How far will this current burst of tabulation take us? To 25 or 30
crossings? Will a mega-tabulation distributed over thousands of
machines via the internet be organized? Will a knot with trivial
Jones polynomial, or some other surprising example be found this
way? Perhaps the greatest gains in tabulation will result from
improvements in computers, but no doubt theoretical advances will
be made as well, allowing more efficient algorithms, and providing
better invariants. This is an exciting time in knot theory!

Acknowledgement Special thanks are due to Joel Hass, Sergei
Matveev, Morwen Thistlethwaite, and Jeff Weeks for their helpful
comments.
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Number of Components
n 1 2 3 4
0
1
2
3
4
5
6 1
7 2
8 3 2 4 2
9 8 18 9 0

10 42
11 185
12 888
13 5110
14 27436
15 168030
16 1008906

Table 2. Number of prime, unoriented, nonalternating
links per crossing number n and number of components.
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